Alterations in the signal transduction pathways which regulate Ca2+ dependent force in the heart contribute to the impaired contractile function in heart failure. These functional changes are likely to be mediated by altered phosphorylation of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) substrates. One of the major PKA/PKC substrates in the cardiac muscle cell is the thin filament regulatory protein, troponin I (TnI). As a result of conformational changes in the TnI molecular upon phosphorylation of the different PKA and PKC sites TnI, interactions between TnI with other proteins of the thin filament - and thus contractile function - are altered. In other words, TnI and its phosphorylation fingerprint represent a critical control point in the pathway regulating contractile state as a function of the incominb Ca2+ signal. We have shown that PKA phosphorylation of TnI is decreased by 25% in human heart failure. This results in increased Ca2+ affinity of troponin C (TnC), and may contribute to enhanced myofilament Ca2+ sensitivity, and prolonged relaxation of failing hearts. In contrast, PKC is reportedly increased in failing hearts; increased PKC phosphorylation of one or more sites on TnI decreases maximal actomyosin (AM) ATPase activity and thus could also contribute to impaired contraction in heart failure. However, reports on the effect of elevated PKC activity on TnI phosphorylation and cardiac function are conflicting. Finally, activity of protein phosphatases - protein phosphatase 1 (PP1) and/or PP2A - will also determine the phosphorylation state of TnI.
In Specific Aim 1, we will identify the complete phosphorylation profile of TnI in failing human hearts with dilated cardiomopathy (DCM) and compare this with non-failing hearts. Electrospray ionization mass spectrometry (ESI/MS) will be used to quantify stoichiometry of the phosphorylated residues in tryptic digests of TnI obtained from failing and non-failing hearts, by a rapid one-step isolation to trop the in vivo phosphorylation state.
In Specific Aim 2, we will (a) examine conformational changes that result from the combined changes of PKC and PKA phosphorylation of TnI in failing vs non-failing hearts. This will be achieved by measurement of fluorescence quenching tryptophan residues in cTnI, with selected serines and threonine mutated to aspartates or alanines, then reconstituted with human cardiac TnT and TnC. (b) The functional consequences of altered TnI phosphorylation will be assessed by measurement of Ca2+ dependent force in skinned cardiac trabeculae from failing and non-failing hearts.
Specific Aim 3 will test the hypothesis that activity of TnI targeted phosphatases is altered in failing hearts. These studies should provide new information on the complete complement of changes in PKA and PKC-dependent TnI phosphorylation in human heart failure. Structural and functional outcomes of these changes plus identification of the altered phosphatase activity will shed light on mechanisms responsible for the functional decline in heart failure.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVB (01))
Program Officer
Reinlib, Leslie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
McConnell, Bradley K; Popovic, Zoran; Mal, Niladri et al. (2009) Disruption of protein kinase A interaction with A-kinase-anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase A phosphorylation, and troponin I proteolysis. J Biol Chem 284:1583-92
Barrows, Brian R; Azimzadeh, Agnes M; McCulle, Stacey L et al. (2007) Robust gene expression with amplified RNA from biopsy-sized human heart tissue. J Mol Cell Cardiol 42:260-4
Russell, Mary A; Lund, Linda M; Haber, Roy et al. (2006) The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 456:204-15
Riddle, Evan L; Schwartzman, Raul A; Bond, Meredith et al. (2005) Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res 96:401-11
Barbato, John C; Huang, Qi-Quan; Hossain, M Moazzem et al. (2005) Proteolytic N-terminal truncation of cardiac troponin I enhances ventricular diastolic function. J Biol Chem 280:6602-9
Masri, Sofia C; Yamani, Mohamad H; Russell, Mary A et al. (2003) Sustained apoptosis in human cardiac allografts despite histologic resolution of rejection. Transplantation 76:859-64
Ruehr, Mary L; Russell, Mary A; Ferguson, Donald G et al. (2003) Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J Biol Chem 278:24831-6
Willard, Belinda B; Ruse, Cristian I; Keightley, J Andrew et al. (2003) Site-specific quantitation of protein nitration using liquid chromatography/tandem mass spectrometry. Anal Chem 75:2370-6
Tan, Fen-Lai; Moravec, Christine S; Li, Jianbo et al. (2002) The gene expression fingerprint of human heart failure. Proc Natl Acad Sci U S A 99:11387-92
Ruse, Cristian I; Willard, Belinda; Jin, J P et al. (2002) Quantitative dynamics of site-specific protein phosphorylation determined using liquid chromatography electrospray ionization mass spectrometry. Anal Chem 74:1658-64

Showing the most recent 10 out of 21 publications