Insulin resistance is an important risk factor for atherosclerosis. Insulin resistance varies widely within populations, and substantial evidence indicates that much of this variation can be attributed to genetic sources. Visceral adiposity, another important atherosclerosis risk factor, is strongly correlated with insulin resistance, and this trait also appears to be under substantial genetic control. The overall goals of the proposed research project are to: 1) identify the genetic determinants of insulin resistance and visceral adiposity; and 2) determine the extent to which insulin resistance, visceral adiposity, and metabolic cardiovascular disease risk factors share common genetic influences. To address these goals, we will enroll 160 families of African-American and Hispanic background who are participating in the Insulin Resistance Atherosclerosis Study (IRAS). Approximately 1280 additional family members will be recruited. Insulin resistance will be measured using the frequently sampled intravenous glucose tolerance test, and visceral adiposity will be measured using computed tomography. A panel of other metabolic cardiovascular disease risk factors will also be assessed. A panel of 370 microsatellite markers will be genotyped from DNA, and a genome-wide scan will be performed at the Mammalian Genotyping Service to detect chromosomal regions containing loci that influence phenotypic variation. We will then saturate the regions of linkage identified in these analyses with additional markers and will then perform linkage disequilibrium analyses in effort to localize further the putative loci. The organization of this study will be similar to that of IRAS, with three clinical centers, a coordinating center, a central laboratory and a genetics laboratory. This Molecular Genetics component of the study will (1) carry out genomic DNA isolation and quality control, (2) fill significant gaps and correct errors in data from the whole genome screen, and (3) carry out detailed analysis of chromosome regions which show evidence for linkage. This project will contribute substantially to our understanding of the genetic determinants of insulin sensitivity, and consequently to risk of atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL060894-01A1
Application #
2881617
Study Section
Special Emphasis Panel (ZHL1-CSR-R (M1))
Project Start
1999-08-15
Project End
2004-07-31
Budget Start
1999-08-15
Budget End
2000-07-31
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Biochemistry
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Young, Kendra A; Maturu, Amita; Lorenzo, Carlos et al. (2018) The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, ?-cell function, and diabetes in Hispanics and African Americans. J Diabetes Complications :
Lee, C Christine; Young, Kendra A; Norris, Jill M et al. (2017) Association of Directly Measured Plasma Free 25(OH)D With Insulin Sensitivity and Secretion: The IRAS Family Study. J Clin Endocrinol Metab 102:2781-2788
Hellwege, Jacklyn N; Palmer, Nicholette D; Mark Brown, W et al. (2015) Empirical characteristics of family-based linkage to a complex trait: the ADIPOQ region and adiponectin levels. Hum Genet 134:203-13
Palmer, Nicholette D; Stevens, Robert D; Antinozzi, Peter A et al. (2015) Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab 100:E463-8
Hellwege, Jacklyn N; Palmer, Nicholette D; Ziegler, Julie T et al. (2014) Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics. Gene 534:33-9
Ng, Maggie C Y; Shriner, Daniel; Chen, Brian H et al. (2014) Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet 10:e1004517
Zhang, Weiming; Langefeld, Carl D; Grunwald, Gary K et al. (2014) Testing gene-environment interactions in family-based association studies using trait-based ascertained samples. Stat Med 33:304-18
Sandy An, S; Palmer, Nicholette D; Hanley, Anthony J G et al. (2013) Genetic analysis of adiponectin variation and its association with type 2 diabetes in African Americans. Obesity (Silver Spring) 21:E721-9
Palmer, Nicholette D; Musani, Solomon K; Yerges-Armstrong, Laura M et al. (2013) Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. Hepatology 58:966-75
An, S Sandy; Palmer, Nicholette D; Hanley, Anthony J G et al. (2013) Estimating the contributions of rare and common genetic variations and clinical measures to a model trait: adiponectin. Genet Epidemiol 37:13-24

Showing the most recent 10 out of 58 publications