application): Colloidal or crystalloid solutions are used to restore blood volume up to the transfusion trigger of 7g Hb/dL. Their use beyond this threshold reduces oxygen carrying capacity, which limits tissue oxygen delivery and survival. This proposal examines the hypothesis that the lack of clinical benefit for plasma expanders (PEs) beyond the transfusion trigger is due to a microvascular malfunction, not due to a reduced oxygen carrying capacity. In particular, alteration of blood properties, including viscosity and oncotic pressure, beyond the transfusion trigger causes: 1) arteriolar vasoconstriction and decreased blood flow; 2) reduced functional capillary density (FCD); and, 3) lowered tissue oxygenation. A proposed mechanism underlying these changes is that below the transfusion trigger blood and plasma viscosity are reduced beyond the compensatory capacity of the cardiovascular system, which causes capillary pressure to decrease, capillaries to become obstructed, and a lowering of FCD. Furthermore, the viscosity of blood with conventional PEs is too low to generate endothelial NO through arteriolar wall shear stress, resulting in reduced vascular tone and increased mitochondrial O2 consumption. The proposed studies will use dextran and starch solutions with different viscosities as PEs in hamster studies using the skin fold microcirculatory model.
The aim will be to partially restore the viscosity of the circulating blood to near normal values in extreme hemodilution (hemodilution beyond the transfusion trigger.) and examine the stated hypothesis by direct in vivo measurement of micro-p02 and micro-NO in blood and tissue, capillary pressure, blood flow velocity, functional capillary density and arteriolar reactivity. In particular the correlation between FCD, a key determinant of tissue survival, and NO regulation will be explored.
Showing the most recent 10 out of 144 publications