Reperfusion of the myocardium following an ischemic episode is associated with profound contractile and metabolic dysfunction, referred to as myocardial stunning. Reperfusion also increases the activity of the Na+/H+ exchanger (NHE), which restores intracellular pH (pHi) towards normal following ischemia-induced acidosis. However, activation of NHE also produces undesirable secondary effects leading to the exacerbation of tissue injury, a phenomenon termed the """"""""pH paradox"""""""". Increased generation of oxygen free radicals (OFR) plays an important role in reperfusion-induced myocardial stunning and NHE activation. An in vitro model for studying the effects of OFRs on cultured neonatal rat ventricular myocytes (NRVM) has been defined, in which low concentrations of H2O2 (similar to those generated during reperfusion) cause contractile dysfunction, Ca2+ overload, and NHE activation. There is considerable interest in identifying signaling events that link H2O2 to myocardial dysfunction. H2O2 and hypoxia activate members of the mitogen activated protein kinase (MAPK) family, including p38, c-jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK1/2). Low doses of H2O2 decrease myocyte contractility and stimulate NHE activity in an ERK1/2-dependent manner. Preliminary data indicate that exposure of cardiac myocytes to H2O2 induces myofilament disassembly, Ca2+ overload, and the activation of the nonreceptor tyrosine kinase src. The hypothesis of this proposal is that the MAPK family modulates NHE activity, Ca2+ overload and contractile dysfunction induced by H2O2.
In Aim 1, experiments with synthetic inhibitors and antisense oligonucleotides will determine whether MAP kinase inhibition blocks H2O2-induced phosphorylation of NHE, since phosphorylation of the exchanger protein is associated with its activation. NHE activation will be measured by fluorimetric imaging of intracellular pH and by examining the phosphorylation state of the NHE protein in vitro and in vivo.
In Aim 2, the link between H2O2-induced contractile dysfunction, Ca2+ overload and MAPK activation will be investigated using pharmacological inhibitors and antisense oligonucleotides against p38, JNK, and ERK MAPKs. Contractile dysfunction will be defined as a decrease in myocyte contractility (using video edge detection), and by immunocytochemistry to measure myofibrillar assembly.
In Aim 3, a studies using immunecomplex kinase assays, immunoprecipitation and Western blot analysis will identify regulatory components upstream of MAPKs that are activated by H2O2.
This aim will focus on src, protein kinase C, and the Ras superfamily of monomeric GTP-binding proteins. The proposed investigations are fundamentally important to the development of therapeutic strategies targeted to signaling pathways involved in oxidant-induced injury and may have important clinical implications in the treatment myocardial ischemia.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL063318-02
Application #
6184718
Study Section
Experimental Cardiovascular Sciences Study Section (ECS)
Project Start
1999-07-01
Project End
2003-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
2
Fiscal Year
2000
Total Cost
$217,682
Indirect Cost
Name
University of Alabama Birmingham
Department
Physiology
Type
Schools of Medicine
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Guggilam, Anuradha; Hutchinson, Kirk R; West, T Aaron et al. (2013) In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J Mol Cell Cardiol 57:47-58
Trask, Aaron J; Katz, Paige S; Kelly, Amy P et al. (2012) Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J Appl Physiol (1985) 113:1128-40
Katz, Paige S; Trask, Aaron J; Souza-Smith, Flavia M et al. (2011) Coronary arterioles in type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with decreased vessel stiffness. Basic Res Cardiol 106:1123-34
Hutchinson, Kirk R; Guggilam, Anuradha; Cismowski, Mary J et al. (2011) Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J Appl Physiol (1985) 111:1778-88
Lord, Kevin C; Shenouda, Sylvia K; McIlwain, Elizabeth et al. (2010) Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction. Cardiovasc Res 87:111-8
Shenouda, Sylvia K; Varner, Kurt J; Carvalho, Felix et al. (2009) Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Cardiovasc Toxicol 9:30-8
Shenouda, Sylvia K; Lord, Kevin C; McIlwain, Elizabeth et al. (2008) Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovasc Res 79:662-70
Ryan, Thomas D; Rothstein, Emily C; Aban, Inmaculada et al. (2007) Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 49:811-21
Rocic, Petra; Jo, Hanjoong; Lucchesi, Pamela A (2003) A role for PYK2 in ANG II-dependent regulation of the PHAS-1-eIF4E complex by multiple signaling cascades in vascular smooth muscle. Am J Physiol Cell Physiol 285:C1437-44
Rothstein, Emily C; Byron, Kenneth L; Reed, Ryan E et al. (2002) H(2)O(2)-induced Ca(2+) overload in NRVM involves ERK1/2 MAP kinases: role for an NHE-1-dependent pathway. Am J Physiol Heart Circ Physiol 283:H598-605

Showing the most recent 10 out of 12 publications