Transforming growth factor-beta1 (TGFbeta1) is a widely-expressed cytokine that has major effects on most cell types. TGFbeta1 is anti- inflammatory, pro-fibrotic, and casually linked to fibrotic diseases, e.g. pulmonary fibrosis. TGFbeta1 is secreted in an inactive complex (FTGFbeta1) with its pro-peptide dimer, which is called latency- associated (LAP). Activation of LTGFbeta1 is a key control point in TGFbeta1 biology, but is poorly understood. Only thrombospondin-1 (TSP1) has been shown previously to active PTGFbeta1 in normal animals. We found that LAP is a ligand for the epithelium-specific integrin alphavbeta6, and that cells expressing alphavbeta6 bind and activate latent TGFbeta1. This mechanism can explain the heretofore puzzling phenotype of beta6 integrin knock-out mice: inflammation in lung and skin, and protection from bleomycin-induced pulmonary fibrosis. Our results provide the first evidence that dysregulated TGFbeta1 activation causes fibrosis. Our goals are to understand quantitatively the interactions between LTGFbeta and alphavbeta6 that lead to activation, and to develop an animal model an animal model and knowledge to explore fully the biological role of a of avbeta6-mediated LTGFbeta1 activation.
In Aim 1 we will analyze the activation mechanism by focusing on alphavbeta6- LTGFbeta1 interactions. We will make TGFbeta1-mull alphavbeta6- expressing cells to which specifically engineered forms of LTGFbeta1 will be added (either by transfection or as recombinant protein). In this system we will then determine the relative activatability of two major forms of LTGFbeta1 (the so-called small and large latent complexes), the relative effects of LTGFbeta1 concentration and alphavbeta6 expression levels of activation, the activatability of soluble and matrix-bound latent TGFbeta1, and the integrin: LTGFbeta1 stoichiometry required for activation. Also, we will assess the influence of integrin/LTGFbeta1 binding affinity on activation. The results will be incorporated into an activation model and related to activation in vivo.
In Aim 2, we will create a mouse expressing a mutant form of LTGFbeta1 that cannot be activated by integrins (the RGD integrin binding sites in LAP will be mutated to RGE). The phenotypes of these mice and beta6 integrin null mice will be compared to confirm that the beta6 null phenotype is due specifically to loss of TGFbeta1 activation. To interpret the phenotype will test the ability of other RGD-binding integrins to activate LTGFbeta1. Finally, we will cross RGE-TGFbeta1 mice with TSP1 null mice to assess the summed effects of the two currently known TGFbeta1 activation mechanisms, namely alphavbeta6 and TSP1. The results of these aims will lead to better understanding of alphavbeta6-mediated TGFbeta1 activation in disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL063786-04
Application #
6629044
Study Section
Lung Biology and Pathology Study Section (LBPA)
Program Officer
Reynolds, Herbert Y
Project Start
2000-02-07
Project End
2004-07-11
Budget Start
2003-02-01
Budget End
2004-07-11
Support Year
4
Fiscal Year
2003
Total Cost
$427,499
Indirect Cost
Name
New York University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Liu, Li; Kugler, Matthias C; Loomis, Cynthia A et al. (2013) Hedgehog signaling in neonatal and adult lung. Am J Respir Cell Mol Biol 48:703-10
Aluwihare, Poshala; Mu, Zhenyu; Zhao, Zhicheng et al. (2009) Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci 122:227-32
Aluwihare, Poshala; Munger, John S (2008) What the lung has taught us about latent TGF-beta activation. Am J Respir Cell Mol Biol 39:499-502
Mu, Zhenyu; Yang, Zhiwei; Yu, Dawen et al. (2008) TGFbeta1 and TGFbeta3 are partially redundant effectors in brain vascular morphogenesis. Mech Dev 125:508-16
Puthawala, Khalid; Hadjiangelis, Nicos; Jacoby, Steven C et al. (2008) Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 177:82-90
Yang, Zhiwei; Mu, Zhenyu; Dabovic, Branka et al. (2007) Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol 176:787-93
Annes, Justin P; Munger, John S; Rifkin, Daniel B (2003) Making sense of latent TGFbeta activation. J Cell Sci 116:217-24
Annes, Justin P; Rifkin, Daniel B; Munger, John S (2002) The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Lett 511:65-8
Mu, Dezhi; Cambier, Stephanie; Fjellbirkeland, Lars et al. (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157:493-507