The hypothesis that the failing heart is energy starved is both long-standing and controversial. There is now convincing evidence from both failed human myocardium and animal models of severe heart failure that the [ATP] is as much as approximately 25 percent lower than in normal myocardium. This decrease is due to a loss of the purine pool. Based on results using NMR spectroscopy and chemical assay, we and others have shown that the tissue contents of phosphocreatine (PCr) and creatine and the capacity of the CK reaction (Vmax) are also lower. These observations increase our understanding of two important aspects of cardiac energetics: the kinetics of ATP synthesis and the thermodynamics of ATP utilization, i.e. the chemical driving force for the ATP-consuming reactions. Our observations that the creatine and purine pools are lower in the failing heart have important implications for understanding the energetics of the failing heart. Because the concentrations of these substrates are lower, the velocities of the reactions they support must be lower. However, the driving force for ATPases of muscle contraction may not be compromised. This new information leads to the following hypothesis: that the loss of creatine in the failing myocardium is an important compensatory mechanism, preserving the driving force for the ATPase reactions. Little is known about the regulation of either creatine transport or de novo purine synthesis in the failing heart. Accordingly, the primary goal of the proposed research plan is to define the mechanisms whereby creatine and purine pools are depleted in the failing heart. A closely related goal is to manipulate the ATP/ADP and PCr/creatine ratios in normal and failing hearts (due to prolonged aortic banding in the rat), and in hearts with low CK Vmax caused by gene deletions of specific CK isozymes, to define the energetic state of the failing heart no longer capable of supporting normal contractile performance and contractile reserve.
Showing the most recent 10 out of 18 publications