Congenital heart disease significantly alters the normal growth and development of the fetus. Furthermore, fetuses with congenital heart disease have excessively high in utero and perinatal morbidity that may be related to impaired fetal systemic and myocardial hemodynamics. Adaptation of the fetal heart to a pressure load or chronic anemia, as occurs with a number of congenital heart lesions or fetal pathologic states, results in an increase in ventricular mass. Little is known on how the overloaded fetal heart adapts its microvasculature and metabolic pathways to accommodate the increase energetic demands of the myocardium. These compensatory myocardial responses likely have a major influence on both immediate and long term survival. In the adult heart, the molecular and morphologic changes that accompany the hypertrophic response have been extensively studied and include reactivation of a number of """"""""fetal"""""""" pathways. However, in the fetal heart, the molecular triggers for increasing ventricular mass and the accompanying vascular and metabolic responses are poorly understood. Our preliminary data obtained in fetal sheep demonstrate that during the third trimester of gestation there are developmental changes in the expression of a number of genes that are likely important in regulating the vascular and metabolic response of the overloaded heart. The immediate goals of the studies outlined in this proposal are: (1) to determine the molecular and morphologic basis of microvascular and metabolic adaptations of the fetal heart as it increases in mass following the imposition of clinically important stimuli; (2) to investigate how these responses are regulated at different stages of fetal development. Information gained from these studies will improve our understanding of the compensatory changes of the overloaded fetal myocardium and help direct new investigations related to returning the heart to more """"""""normal"""""""" physiology. The end result is hoped to be that the infant with a more 'normal' heart and circulatory physiology will have improved survival with less morbidity.