This application proposes to continue our studies of the Na,K-ATPase and is directed toward several ongoing goals. One of these is to test whether the cardiac glycoside binding site of the alpha2 or alpha3 isoforms of this enzyme, which is highly conserved among species, plays a biological role. Such studies will provide insight as to whether endogenous cardiac glycosides such as endogenous ouabain observed by many laboratories is physiologically significant. Another objective is to define the role of the alpha2 isoform in heart and vascular smooth muscle by analyzing tissue-specific alpha2 isoform knockout animals.
The specific aims of our grant are (1) To determine whether the cardiac glycoside binding site of the Na,K-ATPase has biological significance and whether endogenous cardiac glycosides play a physiological role. To accomplish this, genetically engineered mice expressing either ouabain-resistant alpha2 or alpha3 isoforms will be analyzed under conditions known to increase the levels of endogenous cardiac glycosides such as ACTH-induced hypertension. If the ouabain-resistant mice respond differently from wild type animals, this will suggest a physiological role for endogenous ouabain. However, if mice with ouabain resistant alpha2 or alpha3 isoforms respond similarly to wild type animals, this will detract from the hypothesis that endogenous cardiac glycosides have physiological significance. (2) To define the specific role of the alpha2 isoform using tissuespecific knockouts. We have already developed mice where the alpha2 isoform gene is flanked by loxP sites and we have mated these to animals carrying Cre-recombinase under the control of a cardiac-specific promoter. We will now mate the alpha2 isoform loxP animals with those expressing Cre-recombinase under the control of a smooth muscle promoter. These matings will provide animals where the alpha2 isoform is missing only in heart or smooth muscle and this will allow us to study the specific role of this isoform in cardiovascular function.
Showing the most recent 10 out of 25 publications