With the initiation of ventilation and oxygenation at birth, pulmonary vascular resistance decreases and pulmonary blood flow increases. There is evidence that increased endothelial NO synthase (eNOS) gene expression, eNOS activity, and NO production contribute to these changes. However, in a number of clinical conditions, there is failure of the pulmonary circulation to undergo this normal transition to postnatal life, resulting in persistent pulmonary hypertension of the newborn (PPHN). PPHN complicates more than 1 in 1000 live birth and up to 10% of admissions to intensive care units. PPHN causes substantial morbidity and mortality in otherwise normal term infants. Newborns who die of PPHN have decreased endogenous NO production and an increase in circulating endothelin (ET-1) levels. In addition these children have an increase in pulmonary arterial medial smooth muscle cell thickness and extension of muscle to normally non muscular arteries. The anatomic changes in the pulmonary vessels in newborns with PPHN are thought to be intimately associated with the morbidity and mortality associated with PPHN. However, the mechanisms producing this abnormal smooth muscle cell (SMC) development and the reduction in ENOS gene expression and NO production are not well understood. We hypothesize that the increased circulating levels of ET-1 in infants with PPHN activates the ETS subtype receptor located in the SMC layer leading to an increase in the production of reactive oxygen species (ROS) in these cells. This increase in ROS then stimulates SMC proliferation while decreasing endogenous ENOS expression in endothelial cells by inhibiting the transcription of its gene. To test these hypotheses we will investigate the following: 1) How does ET-1 stimulate ROS generation in SMCs? 2) Are the increased levels of ROS induced by ET-1 linked to an increase in SMC proliferation? 3) Does ROS reduce, while antioxidants increase, eNOS gene expression in endothelial cells? The successful completion of these studies will lead to a better understanding of the mechanisms responsible for the development of PPHN and may lead to new treatments for infants born with pulmonary hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL067841-01A1
Application #
6474787
Study Section
Human Embryology and Development Subcommittee 1 (HED)
Program Officer
Berberich, Mary Anne
Project Start
2002-04-01
Project End
2006-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
1
Fiscal Year
2002
Total Cost
$260,367
Indirect Cost
Name
Northwestern University at Chicago
Department
Pediatrics
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Gross, Christine M; Kellner, Manuela; Wang, Ting et al. (2018) LPS-induced Acute Lung Injury Involves NF-?B-mediated Downregulation of SOX18. Am J Respir Cell Mol Biol 58:614-624
Black, Stephen M; Field-Ridley, Aida; Sharma, Shruti et al. (2017) Altered Carnitine Homeostasis in Children With Increased Pulmonary Blood Flow Due to Ventricular Septal Defects. Pediatr Crit Care Med 18:931-934
Wang, Ting; Gross, Christine; Desai, Ankit A et al. (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452-L476
Song, Shanshan; Ayon, Ramon J; Yamamura, Aya et al. (2017) Capsaicin-induced Ca2+ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. Am J Physiol Lung Cell Mol Physiol 312:L309-L325
Chen, F; Wang, Y; Rafikov, R et al. (2017) RhoA S-nitrosylation as a regulatory mechanism influencing endothelial barrier function in response to G+-bacterial toxins. Biochem Pharmacol 127:34-45
Kumar, Sanjiv; Sun, Xutong; Noonepalle, Satish Kumar et al. (2017) Hyper-activation of pp60Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 102:217-228
Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M et al. (2016) ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol 310:C99-114
Kovacs, Laszlo; Han, Weihong; Rafikov, Ruslan et al. (2016) Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 54:384-93
Sharma, Bal Krishan; Kolhe, Ravindra; Black, Stephen M et al. (2016) Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J 30:262-75
Xie, Lishi; Chiang, Eddie T; Wu, Xiaomin et al. (2016) Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 11:e0158865

Showing the most recent 10 out of 119 publications