Sudden cardiac death (SCD) affects 400,000 individuals each year in the U.S. alone. Over half have no evidence of heart disease prior to death, and our ability to identify those at risk and therefore prevent SCD is poor. Mutations in cardiac ion channel genes including SCN5A, KVLQT1, HERG, KCNE1, KCNE2, and RyR2 have been implicated in monogenic traits with a high risk of SCD, such as the Iong-QT, Brugada, sudden infant death syndrome, and catecholaminergic polymorphic ventricular tachycardia. Alterations in ion channel function can result in life-threatening ventricular arrhythmias in diverse disease states. Therefore, sequence variants in these genes that alter function or transcription of these ion channels may confer a predisposition to ventricular arrhythmia and SCD in broader populations. This research program proposes to determine if sequence variants in the above candidate genes are associated with an increased risk of SCD in apparently healthy populations. Cases of SCD will be assembled from five NIH-funded prospective cohorts with a total of 106,314 individuals with existent blood samples. All cohorts are exceptionally wellcharacterized with respect to environmental exposures and have collected medical records on cardiovascular endpoints. We will characterize all coding sequence variation and selected non-coding sequence variation among 100 cases and controls from these cohorts. Using these novel markers, we will define the haplotype block structure (SNPs in linkage disequilibrium) for the six genes. We will then employ a nested case-control design and conditional logistic regression to test for associations between haplotypes (haplotype tag SNPs) in both coding and non-coding regions and SCD risk. We will also test directly for associations between single loci that may have functional significance and SCD risk. An estimated 600 cases of well-documented SCD will be confirmed over the first three years of the grant period, and these cases will be matched on age, sex, ethnicity, and geographic location to two control subjects from the same cohort. In addition, based upon known sex-differences in the phenotypic expression of the candidate genes in the primary arrhythmic disorders, we will specifically examine sex-differences in the risk of SCD associated with sequence variation in these genes. The findings generated will have substantial implications for our understanding of the SCD syndrome and risk stratification in the general population.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CCVS (01))
Program Officer
Jaquish, Cashell E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Ashar, Foram N; Mitchell, Rebecca N; Albert, Christine M et al. (2018) A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J 39:3961-3969
Patel, Ravi B; Moorthy, M V; Chiuve, Stephanie E et al. (2017) Hemoglobin A1c levels and risk of sudden cardiac death: A nested case-control study. Heart Rhythm 14:72-78
Lemaitre, Rozenn N; Johnson, Catherine O; Hesselson, Stephanie et al. (2014) Common variation in fatty acid metabolic genes and risk of incident sudden cardiac arrest. Heart Rhythm 11:471-7
Huertas-Vazquez, Adriana; Teodorescu, Carmen; Reinier, Kyndaron et al. (2013) A common missense variant in the neuregulin 1 gene is associated with both schizophrenia and sudden cardiac death. Heart Rhythm 10:994-8
Gavin, Michael C; Newton-Cheh, Christopher; Gaziano, John Michael et al. (2011) A common variant in the ?2-adrenergic receptor and risk of sudden cardiac death. Heart Rhythm 8:704-10
Chiuve, Stephanie E; Korngold, Ethan C; Januzzi Jr, James L et al. (2011) Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr 93:253-60
Arking, Dan E; Junttila, M Juhani; Goyette, Philippe et al. (2011) Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet 7:e1002158
Albert, Christine M; MacRae, Calum A; Chasman, Daniel I et al. (2010) Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol 3:222-9
Fishman, Glenn I; Chugh, Sumeet S; Dimarco, John P et al. (2010) Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 122:2335-48
Chiuve, Stephanie E; Rimm, Eric B; Mukamal, Kenneth J et al. (2010) Light-to-moderate alcohol consumption and risk of sudden cardiac death in women. Heart Rhythm 7:1374-80

Showing the most recent 10 out of 16 publications