High avidity CD8+ T cells are known to be the most effective mediators of viral clearance. Thus understanding how avidity is controlled following viral infection is of critical importance for designing optimally effective therapeutics and vaccines. Functional avidity is defined as the sensitivity of the cell to peptide/MHC (pMHC). Within the responding CD8+ T cell population are effector clones that encompass a broad range of avidities. Thus generation of a mixed avidity response appears to be the norm. The studies proposed in this application build on our previous findings using the paramyxovirus simian virus 5 (SV5). This model has been utilized to probe the anti-viral response following respiratory tract infection. We have made the seminal observation that following respiratory infection, the initial CD8+ effector cells generated exhibit a high avidity phenotype. As the response progresses, while high avidity cells continue to expand, low avidity also become apparent comprising approximately half of the anti-viral population. The overall goal of the project proposed here is to determine the mechanism responsible for kinetic separation in the appearance of high versus low avidity cells following viral infection. To this end, the studies proposed in specific aim 1 will determine the contribution of inherent and induced avidity to the generation of high versus low avidity T cells. The observation that high avidity cells are the initial responders while low avidity cells are restricted to later times suggests two hypotheses: 1) Avidity is induced in the responding cells by the conditions present at early versus late times postinfection and 2) Avidity is an inherent property of naove T cells and those of high versus low avidity are selectively activated at early vs. late times. This will be tested in part by determining the ability of cells present at early times to give rise to a mixed avidity population. In subsequent studies the inherent avidity of the naove pool will be manipulated to determine the effects on avidity at the population level at early versus late times. The goal of the studies in specific aim 2 is to determine the role of APC in the control of avidity. The kinetic separation in the presence of high versus low avidity cells would suggest differences exist in signals present in the lymph node at early versus late times. At later times, these signals would promote avidity down-modulation in high avidity cells generated earlier or alternatively would cause the activation of naove cells with inherently lower avidity.
Aim two will test the hypothesis that the APC is a key component in this process. Together these studies will reveal new and important insights into the in vivo regulation of avidity and the role of APC in determining how T cells that differ in avidity are expanded during generation of the anti-viral response. Further they will provide novel information with regard to our understanding of the contribution of distinct APC subsets to the control of avidity following respiratory infection. Results from these studies may elucidate novel opportunities for intervention where immune responses are suboptimal as well as for the generation of more protective vaccines.

Public Health Relevance

High avidity CD8+ T cells are known to be the most effective mediators of viral clearance. The information gained from the novel studies proposed in this application will significantly impact the field by providing a model for how avidity is shaped in vivo following viral infection. This information is of critical importance for designing optimally effective therapeutics and vaccines.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL071985-06
Application #
7650906
Study Section
Special Emphasis Panel (ZRG1-IDM-Q (02))
Program Officer
Reynolds, Herbert Y
Project Start
2002-12-01
Project End
2011-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
6
Fiscal Year
2009
Total Cost
$397,970
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Holbrook, Beth C; Yammani, Rama D; Blevins, Lance K et al. (2013) In vivo modulation of avidity in highly sensitive CD8(+) effector T cells following viral infection. Viral Immunol 26:302-13
Amoah, Samuel; Holbrook, Beth C; Yammani, Rama D et al. (2013) High viral burden restricts short-lived effector cell number at late times postinfection through increased natural regulatory T cell expansion. J Immunol 190:5020-9
Amoah, Samuel; Yammani, Rama D; Grayson, Jason M et al. (2012) Changes in functional but not structural avidity during differentiation of CD8+ effector cells in vivo after virus infection. J Immunol 189:638-45
Beauchamp, Nicole M; Yammani, Rama D; Alexander-Miller, Martha A (2012) CD8 marks a subpopulation of lung-derived dendritic cells with differential responsiveness to viral infection and toll-like receptor stimulation. J Virol 86:10640-50
Busick, Rhea Y; Yammani, Rama D; Alexander-Miller, Martha A (2011) Differentiation-dependent differences in murine T cell susceptibility to negative regulation by the lung. Am J Respir Cell Mol Biol 44:597-605
Sharma, Sharad K; Alexander-Miller, Martha A (2011) Increased sensitivity to antigen in high avidity CD8(+) T cells results from augmented membrane proximal T-cell receptor signal transduction. Immunology 133:307-17
Arimilli, Subhashini; Sharma, Sharad K; Yammani, Rama et al. (2010) Pivotal Advance: Nonfunctional lung effectors exhibit decreased calcium mobilization associated with reduced expression of ORAI1. J Leukoc Biol 87:977-88
Beauchamp, Nicole M; Busick, Rhea Y; Alexander-Miller, Martha A (2010) Functional divergence among CD103+ dendritic cell subpopulations following pulmonary poxvirus infection. J Virol 84:10191-9
Palmer, Ellen M; Holbrook, Beth C; Arimilli, Subhashini et al. (2010) IFNgamma-producing, virus-specific CD8+ effector cells acquire the ability to produce IL-10 as a result of entry into the infected lung environment. Virology 404:225-30
Yammani, Rama D; Pejawar-Gaddy, Sharmila; Gurley, Thaddeus C et al. (2008) Regulation of maturation and activating potential in CD8+ versus CD8- dendritic cells following in vivo infection with vaccinia virus. Virology 378:142-50

Showing the most recent 10 out of 17 publications