Regulated apoptosis is critical to T cell development in the thymus and controls T cell- dependent adaptive immunity in periphery. 2-catenin, a coactivator of T cell factor 1 (TCF-1), and retinoid-related orphan receptor gamma t (ROR3t) both regulate thymocyte survival via the up-regulation of anti-apoptotic Bcl-xL. In the process of studying ROR3t, we have identified 2- catenin/TCF-1 as a potential upstream pathway that controls ROR3t-mediated thymocyte survival. Deletion of TCF-1 resulted in thymocyte apoptosis and down-regulated ROR3t, whereas transgenic expression of a stabilized 2-catenin (2-catTg), which activated TCF-1 constitutively, led to enhanced thymocyte survival and up-regulated ROR3t. In contrast to its survival role in thymocytes, 2-catTg up-regulated pro-apoptotic Bid and surface Fas, and enhanced super-antigen staphylococcal enterotoxin B (SEB)-induced deletion of peripheral T cells by promoting activation-induced cell death (AICD). We thus hypothesize that the 2- catenin/TCF pathway utilizes distinct mechanisms in the regulation of apoptosis in developing T cells and peripheral mature T cells. In the first two aims of this study, we propose to elucidate the mechanisms responsible for 2-catenin/TCF-1-regulated apoptosis in thymocytes and peripheral T cells. In the last aim, we will determine whether we can control T cell-dependent allograft rejection by manipulating 2-catenin-regulated T cell survival. Public Health Relevance: This proposal is to study the mechanisms responsible for 2-catenin and ROR3t-regulated T cell apoptosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL072010-10
Application #
8449674
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Wong, Renee P
Project Start
2003-05-02
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$347,421
Indirect Cost
$124,715
Name
Duke University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Hodgkinson, Conrad P; Gomez, José A; Baksh, Syeda Samara et al. (2018) Insights from molecular signature of in vivo cardiac c-Kit(+) cells following cardiac injury and ?-catenin inhibition. J Mol Cell Cardiol 123:64-74
Dal-Pra, Sophie; Hodgkinson, Conrad P; Mirotsou, Maria et al. (2017) Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo. Circ Res 120:1403-1413
Matsushita, Kenichi; Wu, Yaojiong; Pratt, Richard E et al. (2016) Deletion of angiotensin II type 2 receptor accelerates adipogenesis in murine mesenchymal stem cells via Wnt10b/beta-catenin signaling. Lab Invest 96:909-17
Li, Yanzhen; Dal-Pra, Sophie; Mirotsou, Maria et al. (2016) Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep 6:38815
Matsushita, Kenichi; Morello, Fulvio; Zhang, Zhiping et al. (2016) Nuclear hormone receptor LXR? inhibits adipocyte differentiation of mesenchymal stem cells with Wnt/beta-catenin signaling. Lab Invest 96:230-8
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Yuan, Hsiangkuo; Gomez, Jose A; Chien, Jennifer S et al. (2016) Tracking mesenchymal stromal cells using an ultra-bright TAT-functionalized plasmonic-active nanoplatform. J Biophotonics 9:406-13
Yang, Yanqiang; Gomez, Jose A; Herrera, Marcela et al. (2015) Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4. Hypertension 65:1047-54
Jayawardena, Tilanthi M; Finch, Elizabeth A; Zhang, Lunan et al. (2015) MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116:418-24
Hodgkinson, Conrad P; Kang, Martin H; Dal-Pra, Sophie et al. (2015) MicroRNAs and Cardiac Regeneration. Circ Res 116:1700-11

Showing the most recent 10 out of 50 publications