Abdominal aortic aneurysms (AAA) occur in approximately 3% of humans > 65 years of age and are characterized by localized structural deterioration of the aortic wall, leading to progressive aortic dilation, The morbidity and mortality associated with AAA are considerable. Surprisingly, however, little is known about the mechanisms responsible for aneurysm formation and progression. Recent histological studies in humans indicate that AAA are highly inflammatory in nature. The inflammatory response is associated with death of smooth muscle cells (SMC) and degradation of matrix proteins by matrix metalloproteinases (MMP) that causes weakening of the aortic wall, and, consequently, dilation. Given that reactive oxygen species (ROS) are produced during inflammation and can induce SMC death and MMP activation, we hypothesize that ROS play a pivotal role in AAA formation. As an initial step to investigate this hypothesis, we examined human aneurysm tissue removed at the time of elective AAA repair. Our studies indicate that levels of superoxide and lipid peroxidation products, an index of tissue injury caused by oxidative stress, are markedly increased in AAA as compared with adjacent, non-aneurysmal aortic tissue obtained from the same patients. We also detected increased expression and activity of NAD(P)H oxidase, a superoxide-generating enzyme, in AAA. Whether or not ROS contribute to the pathogenesis of AAA, however, remains to be determined. An experimental model of aneurysm formation has recently been developed in which angiotensin II is infused into hyperlipidemic male mice. After 28 days, the mice develop AAA with histologic and pathological features that resemble AAA in humans. Angiotensin II is known to induce aortic inflammation and production of superoxide through activation of NAD(P)H oxidase, which is thought to play a role in vascular disease in humans. Preliminary data using this model indicate that levels of superoxide in the aorta of these mice are markedly increased in response to infusion of angiotensin II, preceding the formation of AAA. Here, we propose to employ a combination of pharmacological and genetic approaches to modulate ROS and NAD(P)H oxidase, and to modulate the Rho/ROCK signaling pathway, in order to investigate the role of oxidative stress in AAA formation. Our findings could have important implications with regard to the treatment of AAA in humans. ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL076684-04
Application #
7373561
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Goldberg, Suzanne H
Project Start
2005-02-16
Project End
2010-01-31
Budget Start
2008-02-01
Budget End
2010-01-31
Support Year
4
Fiscal Year
2008
Total Cost
$369,790
Indirect Cost
Name
University of Cincinnati
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Chen, Zixin; Li, Yongjun; Yu, Hong et al. (2017) Isolation of Extracellular Vesicles from Stem Cells. Methods Mol Biol 1660:389-394
Campbell, C R; Berman, A E; Weintraub, N L et al. (2016) Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Med Hypotheses 88:6-9
Kim, Ha Won; Weintraub, Neal L (2016) Aortic Aneurysm: In Defense of the Vascular Smooth Muscle Cell. Arterioscler Thromb Vasc Biol 36:2138-2140
Yiew, Kan Hui; Chatterjee, Tapan K; Hui, David Y et al. (2015) Histone Deacetylases and Cardiometabolic Diseases. Arterioscler Thromb Vasc Biol 35:1914-9
Wang, Yingjie; Zhang, Lan; Li, Yongjun et al. (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61-9
Mohamed, Riyaz; Ranganathan, Punithavathi; Jayakumar, Calpurnia et al. (2014) Urinary semaphorin 3A correlates with diabetic proteinuria and mediates diabetic nephropathy and associated inflammation in mice. J Mol Med (Berl) 92:1245-56
Manka, David; Chatterjee, Tapan K; Stoll, Lynn L et al. (2014) Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol 34:1723-30
Chen, Lijuan; Phillips, M Ian; Miao, Hui-Lai et al. (2014) Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts. PLoS One 9:e107841
Zhang, Lan; Pan, Yaohua; Qin, Gangjian et al. (2014) Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium. Cell Cycle 13:762-71
Omar, Abdullah; Chatterjee, Tapan K; Tang, Yaoliang et al. (2014) Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol 34:1631-6

Showing the most recent 10 out of 54 publications