Shear stress acting on endothelial cells produces vasodilation. This is arguably the most physiologically important endothelial mechanism of dilation and occurs in virtually every vascular bed. Recent data from our laboratory indicate that flow-mediated dilation (FMD) occurs in coronary arterioles from patients with coronary disease however it operates through a novel mechanism involving endothelial production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Surprisingly the mitochondrial respiratory chain plays a necessary role in FMD in the human heart, however it is not known how mitochondria are involved in the transduction of mechanical shear stress on the surface of the endothelium to elicit dilation. Our overall hypothesis is that shear acting on endothelial cells through attached cytoskeletal elements stimulates release from the mitochondria of H2O2, an endothelial derived hyperpolarizing factor (EDHF). We shall test this hypothesis in three ways. First antimycin A and TNFalpha will be used to determine if pharmacological stimulation of mitochondrial ROS release can elicit dilation of human coronary arterioles. In separate studies, we shall use novel antioxidants targeted to the mitochondrial inner membrane to determine whether H2O2 generated from within the mitochondria is necessary for FMD. A bioassay system will confirm whether H2O2 is indeed an EDHF mediating FMD in the human coronary circulation. Second we will use immunohistochemistry and specific pharmacological and molecular approaches including siRNA to determine whether endothelial cytoskeletal elements play a necessary role in FMD and mitochondrial ROS generation. Third, we shall test the hypothesis that nitric oxide through its inhibitory effect on mitochondrial respiration reduces FMD in the human heart. This will be done using nitric oxide donors, measuring mitochondrial complex activity and ROS generation. These experiments may identify a pathway not previously described by which nitric oxide can inhibit EDHF-mediated dilation; namely, by blocking mitochondrial production of ROS. Collectively these aims address a novel mechanism of endothelium-dependent vasodilation involving mitochondrial generation of ROS, thus far reported only in human hearts. These studies should identify new links among cell processes including mechanotransduction, respiration, and redox signaling that regulate physiological events such as vasodilation.
Showing the most recent 10 out of 21 publications