Vasculogenesis and angiogenesis are controlled by a complex system of growth factors and their cognate receptors. These include VEGF/VEGFR and angiopoietin/Tie signaling pathways, as well as b-FGF, TGF-beta, ephrins, and their receptors. In addition, the importance of Notch signaling for vascular development and arterial-venous fate specification has been elucidated. While the importance of these pathways for vascular development has been documented, it is likely that other critical factors remain unidentified. Using a """"""""gene trap"""""""" approach, we recently identified Egfl7, a novel endothelial-restricted gene that encodes a secreted protein with an EMI domain, two EGF domains, and a putative DSL domain found in Notch ligands. Egfl7 is specifically expressed in the emerging vasculature and its progenitors in the yolk sac blood islands. In adults, Egfl7 is up-regulated during angiogenesis and arterial injury. Our preliminary studies indicate that EGFL7 binds to Notch 1 and 4 in vitro and mediates several of the known Notch effector functions. In the present proposal, we will test the hypothesis that EGFL7 is a novel ligand for Notch, that EGFL7 functions as a Notch agonist, and that EGFL7-induced Notch signaling mediates distinctive and non-redundant processes during vascular development and angiogenesis. We will test these hypotheses in primary human endothelial cells, and by using gain- and loss-of-function approaches in an ES cell in vitro differentiation system and in mice. We are proposing the following aims:
Aim 1 : Determine the role of EGFL7 in Notch signaling in HUVEC and in a chick chorioallantoic membrane model.
Aim 2 : Determine whether overexpression of Egfl7 in the endothelium leads to defects in vascular development. We will force expression of Egfl7 in endothelial cells by generating Tie2-Egfl7 transgenic mice, and induce Egfl7 expression in endothelial cells by generating VE-Cadherin:tTA;TRE-Egfl7 transgenic mice.
Aim 3 : Test whether Egfl7 function is crucial for early stages of vascular development. We will generate mice with a conditional knock-out allele and lentivirus-based siRNA knock-down in ES cells and mouse embryos.