Visceral obesity is associated with high triglyceride rich lipoproteins (TGRL) and low HDL. These individuals typically suffer from metabolic syndrome and are at increased risk for atherosclerosis. Diets high in saturated fat lead to arterial plaque formation through binding and uptake of TGRL, which penetrate into the vascular wall and stimulate cytokine expression and recruitment of monocytes. We have developed an ex-vivo system that models these early inflammatory events in atherogenesis. The influence of a high-fat diet is mimicked by repetitively exposing aortic endothelium in culture to native postprandial TGRL that is freshly-isolated from human plasma. Our primary hypothesis is that native unmodified TGRL amplifies cytokine mediated inflammation via an LDL receptor initiated pathway that is distinct from that of oxidized lipoprotein and the scavenger receptor pathway. Endothelial dysfunction is associated with vascular regions of low shear stress and disturbed flow that are sites of lipid accumulation and monocyte recruitment, both of which accelerate the inflammatory axis of atherogenesis. A systems bioengineering approach is applied to study this process at the cell and molecular scale under defined shear stress as described in three Specific Aims: 1) To define how repetitive exposure of human aortic endothelial cells to TGRL primes for enhanced vascular inflammation and atherogenesis employing a vascular mimetic flow channel system. 2) To analyze the inflammatory events in atherogenesis at the level of gene transcription and protein expression by aortic endothelial cells under conditions of well defined fluid shear stress. 3) To identify the molecular mechanisms underlying monocyte recruitment to atherogenic endothelium in vascular mimetic flow channels. Our overall goal is to identify how dietary lipoproteins from healthy and metabolic syndrome subjects act as proinflammatory mediators in shifting the balance from healthy to atherogenic endothelium.Project Narrative: Few studies have focused on the earliest event in atherosclerosis when endothelium succumbs to hyperlipidemia and lowers its normal defenses to stave off inflammation. A significant outcome of the proposed studies would be to develop a lab on a chip that measures the inflammatory potential of an individual's lipids after a meal. This would reflect a person's metabolic profile and correlate with their propensity to develop atherosclerosis and heart disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL082689-03
Application #
7799864
Study Section
Special Emphasis Panel (ZRG1-SBIB-E (03))
Program Officer
Hasan, Ahmed AK
Project Start
2008-03-01
Project End
2012-02-29
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
3
Fiscal Year
2010
Total Cost
$410,652
Indirect Cost
Name
University of California Davis
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Bailey, Keith A; Haj, Fawaz G; Simon, Scott I et al. (2017) Atherosusceptible Shear Stress Activates Endoplasmic Reticulum Stress to Promote Endothelial Inflammation. Sci Rep 7:8196
Sun, Chongxiu; Simon, Scott I; Foster, Greg A et al. (2016) 11,12-Epoxyecosatrienoic acids mitigate endothelial dysfunction associated with estrogen loss and aging: Role of membrane depolarization. J Mol Cell Cardiol 94:180-188
Radecke, Christopher E; Warrick, Alexandra E; Singh, Gagan D et al. (2015) Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb Haemost 113:605-16
Wang, Hongfeng; Weihrauch, Dorothee; Kersten, Judy R et al. (2015) Alagebrium inhibits neointimal hyperplasia and restores distributions of wall shear stress by reducing downstream vascular resistance in obese and diabetic rats. Am J Physiol Heart Circ Physiol 309:H1130-40
Xu, Lu; Dai Perrard, Xiaoyuan; Perrard, Jerry L et al. (2015) Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol 35:1787-97
Foster, Greg A; Xu, Lu; Chidambaram, Alagu A et al. (2015) CD11c/CD18 Signals Very Late Antigen-4 Activation To Initiate Foamy Monocyte Recruitment during the Onset of Hypercholesterolemia. J Immunol 195:5380-92
Tarbell, John M; Simon, Scott I; Curry, Fitz-Roy E (2014) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505-32
Foster, Greg A; Gower, R Michael; Stanhope, Kimber L et al. (2013) On-chip phenotypic analysis of inflammatory monocytes in atherogenesis and myocardial infarction. Proc Natl Acad Sci U S A 110:13944-9
Wang, Ying I; Bettaieb, Ahmed; Sun, Chongxiu et al. (2013) Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS One 8:e78322
Kusunose, Jiro; Zhang, Hua; Gagnon, M Karen J et al. (2013) Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow. Ann Biomed Eng 41:89-99

Showing the most recent 10 out of 20 publications