Atherosclerosis is a systemic disease;however, its manifestations tend to be focal and eccentric. Shear stress is known to regulate NADPH oxidase activities as a source of endothelial superoxide production (O2-.). The Micro Electro Mechanical Systems (MEMS) provide a spatial resolution comparable to the individually elongated endothelial cells and temporal resolution at 71 kHz that permits investigation of the mechanisms whereby spatial and temporal variations of shear stress regulate the oxidant stress-mediated responses. Our working hypothesis is that at arterial bifurcations, the regions of moderate to high shear stress where flow remains unidirectional and axially aligned experience relatively little oxidative stress. In contrast, excess production of reactive oxygen species (ROS) develops largely in regions of relative low shear stress, flow separation, and departure from axjally aligned and unidirectional flow profiles. We propose that the spatial variations in shear stress at bifurcations regulate the relative production of 02-. or ROS and nitric oxide or reactive nitrogen species (RNS) production. At arterial bifurcations where oscillatory shear stress is prevalent, the increase in O2.- production relative to NO production likely limits NO bioavailability through formation of the potent oxidant, peroxynitrite (ONOO-). To interface the MEMS sensors with our hypothesis, we propose following three aims:
Aim 1. Demonstrate that MEMS sensors provide spatial resolution to resolve circumferential variations in shear stress in a 3-D symmetric bifurcation model.
Aim 2. Determine the effects of spatial variations in shear stress on specific regions of vascular oxidative stress in the aortas of New Zealand White (NZW) rabbits.
Aim 3. Elucidate the mechanism(s) by which spatial and temporal variations in shear stress regulate endothelial .NO and O2-. production and subsequent atherogenic LDL modifications. The new shear stress sensing technology can be applied to in vivo measurements that are critical to validating the findings so far in cell systems and in vitro. Further development and application of MEMS technology to in vivo studies in rabbits will be a major goal of this project.
Showing the most recent 10 out of 65 publications