Atherosclerosis is a chronic inflammatory disease, characterized by specific infiltration of monocytic cells, such as monocytes and T-cells, while neutrophils are essentially absent in the fatty streak lesion. One of the earliest steps in the development of the atherosclerotic lesion is the adhesion of monocytes to endothelial cells of the vessel wall. Previously it was demonstrated that, if stimulated with minimally modified LDL (MM-LDL), endothelial cells are activated to specifically bind monocytes, but not neutrophils. This specificity towards mononuclear cells was subsequently observed with the activation of endothelial cells by oxidized 1-palmitoyl-2-arachidonoyl-s/7-glycero-3-phosphocholine (OxPAPC), implying lipid oxidation products as culprits in chronic inflammation. We hypothesize that specific phospholipid oxidation products (OxPL) trigger vascular inflammation and determine monocyte specificity characteristic of atherosclerosis and other chronic inflammatory diseases. The outcome of the proposed studies will add to our understanding of how atherosclerosis is initiated and propagated and should lead to new strategies in the treatment of chronic inflammatory disorders.
The specific aims addressed in this proposal are:
Specific Aim #1 : To structurally identify individual OxPL that determine monocyte specific inflammation and to investigate the hypothesis that OxPL-induced signaling involves TLR4. We will investigate intracellular signaling pathways induced by OxPL that lead to specific monocyte adhesion in vitro, using HUVEC as well as isolated murine aortic EC. Furthermore, we will test the hypothesis that POVPC is one active component in OxPAPC that determines monocyte specificity and determine structure-function relationships. We will examine the role of TLR-4 and the involvement of the TLR-4 adaptor proteins MyD88 and TRIP, as well as respective downstream elements in OxPL-mediated signalling events.
Specific Aim #2 : To explore the hypothesis that OxPL are triggers of vascular inflammation in vivo. To mimic accumulation of OxPL in the vascular wall, we will topically apply OxPL to carotid arteries in mice and measure chemokine and adhesion molecule expression. Furthermore, we will use ex vivo perfused carotid arteries to study OxPL-induced monocyte rolling and adhesion.
Specific Aim #3 : To examine the hypothesis that OxPL-induced specific mononuclear cell accumulation in vivo requires a specific chemokine expression pattern and involves 12 lipoxygenase. Using the mouse air pouch model, we will examine OxPL-induced leukocyte accumulation in vivo and characterize leukocyte subsets. We will investigate the chemokine expression pattern as well as time course of expression in OxPL-induced compared to LPS-induced inflammation. Furthermore, we will investigate the role of 12-LO in OxPL-induced inflammation in vivo.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL084422-05
Application #
7784435
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Liu, Lijuan
Project Start
2006-04-01
Project End
2012-09-30
Budget Start
2010-04-01
Budget End
2012-09-30
Support Year
5
Fiscal Year
2010
Total Cost
$330,990
Indirect Cost
Name
University of Virginia
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Adamson, Samantha E; Griffiths, Rachael; Moravec, Radim et al. (2016) Disabled homolog 2 controls macrophage phenotypic polarization and adipose tissue inflammation. J Clin Invest 126:1311-22
Leitinger, Norbert; Schulman, Ira G (2013) Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33:1120-6
Meher, Akshaya K; Sharma, Poonam R; Lira, Vitor A et al. (2012) Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med 52:1708-15
Adamson, Samantha; Leitinger, Norbert (2011) Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol 22:335-42
Rao, Jayasimha; Elliott, Michael R; Leitinger, Norbert et al. (2011) RahU: an inducible and functionally pleiotropic protein in Pseudomonas aeruginosa modulates innate immunity and inflammation in host cells. Cell Immunol 270:103-13
Kadl, Alexandra; Sharma, Poonam R; Chen, Wenshu et al. (2011) Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic Biol Med 51:1903-9
Rao, Jayasimha; DiGiandomenico, Antonio; Artamonov, Mykhaylo et al. (2011) Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 270:95-102
Sharma, Rahul; Sharma, Poonam R; Kim, Young-Chul et al. (2011) IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. J Immunol 186:1268-78
Kadl, Alexandra; Meher, Akshaya K; Sharma, Poonam R et al. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737-46
Heberlein, Katherine R; Straub, Adam C; Best, Angela K et al. (2010) Plasminogen activator inhibitor-1 regulates myoendothelial junction formation. Circ Res 106:1092-102

Showing the most recent 10 out of 19 publications