Each beat of the heart begins as a spontaneous electrical depolarization of specialized pacemaker cells in the sinoatrial node. The sympathetic nervous system increases heart rate primarily by releasing norepinephrine from nerves that innervate the sinoatrial node. Within the sinoatrial myocytes, this aspect of the sympathetic fight-or-flight response requires communication between the 2 adrenergic receptors (2ARs) that respond to the norepinephrine and the ion channels that collectively control the timing and shape of action potentials. The long-term goal of this project is to understand the molecular machinery that produces and regulates pacemaker activity in sinoatrial myocytes. Experiments outlined in this proposal focus on some aspects of signaling between 2ARs and hyperpolarization-activated, cyclic nucleotide sensitive (HCN, or pacemaker) ion channels. HCN channels are activated by 2ARs and are thought to be critical both for setting the resting heart rate and for mediating the positive chronotropic effect of 2 agonists. However, the biophysical mechanisms for HCN channel involvement in pacemaking, and the functional and physical relationships between HCN channels and 2 adrenergic receptors are poorly understood. The working hypotheses to be tested in this project are that a leak current produced by HCN channels is critical for pacemaker activity in sinoatrial myocytes, and that sympathetic regulation of pacemaking requires a macromolecular signaling complex that contains 2ARs and HCN channels. These questions will be addressed using expressed HCN channels, acutely isolated murine sinoatrial myocytes and cultured sinoatrial myocytes. The principle techniques to be employed are patch clamp electrophysiology, confocal immunofluorescent microscopy, and immunoaffinity chromatography. There are three specific aims: (1) To understand the biophysical mechanisms for HCN channel activity during diastole, (2) To describe the functional relationships between 2ARs and HCN channels that control firing rate in sinoatrial myocytes, and (3) To determine the subcellular localization and physical interactions of proteins that participate in sympathetic control of pacemaking.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
7R01HL088427-02
Application #
7554620
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Wang, Lan-Hsiang
Project Start
2008-01-15
Project End
2012-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
2
Fiscal Year
2009
Total Cost
$371,232
Indirect Cost
Name
University of Colorado Denver
Department
Physiology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Proenza, Catherine (2018) Exploiting natural regulation. Elife 7:
St Clair, Joshua R; Larson, Eric D; Sharpe, Emily J et al. (2017) Phosphodiesterases 3 and 4 Differentially Regulate the Funny Current, If, in Mouse Sinoatrial Node Myocytes. J Cardiovasc Dev Dis 4:
Rickert, Christian; Proenza, Catherine (2017) ParamAP: Standardized Parameterization of Sinoatrial Node Myocyte Action Potentials. Biophys J 113:765-769
Yavari, Arash; Bellahcene, Mohamed; Bucchi, Annalisa et al. (2017) Mammalian ?2 AMPK regulates intrinsic heart rate. Nat Commun 8:1258
Sharpe, Emily J; Larson, Eric D; Proenza, Catherine (2017) Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. J Gen Physiol 149:237-247
Grandi, Eleonora; Sanguinetti, Michael C; Bartos, Daniel C et al. (2017) Potassium channels in the heart: structure, function and regulation. J Physiol 595:2209-2228
Sharpe, Emily J; St Clair, Joshua R; Proenza, Catherine (2016) Methods for the Isolation, Culture, and Functional Characterization of Sinoatrial Node Myocytes from Adult Mice. J Vis Exp :
Zhao, Yuanbiao; Londono, Pilar; Cao, Yingqiong et al. (2015) High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 6:8243
St Clair, Joshua R; Sharpe, Emily J; Proenza, Catherine (2015) Culture and adenoviral infection of sinoatrial node myocytes from adult mice. Am J Physiol Heart Circ Physiol 309:H490-8
Larson, Eric D; St Clair, Joshua R; Sumner, Whitney A et al. (2013) Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A 110:18011-6

Showing the most recent 10 out of 15 publications