Chronic obstructive pulmonary disease (COPD), the third leading cause of death in the United States, is a heterogeneous syndrome. Comprehensive insight into COPD heterogeneity will require longitudinal data to elucidate the genetic, clinical, and radiographic determinants of disease progression. This proposal will extend the COPDGene Study by performing five-year longitudinal follow-up visits on all available COPDGene subjects, with follow-up chest CT scans on all subjects except control smokers with normal baseline CT scans. The primary goals of COPDGene are: a) To identify new genetic loci that influence the development of COPD and COPD-related phenotypes; and b) To reclassify COPD into subtypes that can ultimately be used to develop effective subtype-specific therapies. The primary hypothesis for this renewal application is that subtypes of COPD which differ in pathophysiological mechanism and disease progression can be identified by integrating imaging, clinical, and genetic characteristics.
The specific aims are: 1) To characterize the determinants of COPD progression over five years using clinical phenotyping and both quantitative and visual analysis of chest CT scans; 2) To assess the rare and common genetic determinants of COPD and COPD- related phenotypes by genotyping with the Exome Chip in 10,171 subjects, followed by whole genome sequencing of 2,000 subjects with specific imaging characteristics and validation of the rare variant associations in the remaining 8,171 COPDGene subjects; and 3) To develop a new classification system based on pathophysiologic subtypes of COPD by integrating genetic, clinical, physiologic, and CT-based phenotypes. This novel COPD classification system will be validated in multiple collaborating COPD cohorts.

Public Health Relevance

We propose a five year longitudinal follow-up of subjects in COPDGene, an extensively phenotyped cohort of more than 10,000 non-Hispanic White and African American smokers at risk for or with COPD. Exome Chip genotyping and whole genome followed by candidate DNA sequencing will be performed to identify rare and common genetic determinants of COPD. The comprehensive clinical, imaging, and genetic data will be used to develop a new classification system for COPD.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL089856-09
Application #
8898889
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Gan, Weiniu
Project Start
2007-07-01
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Boueiz, Adel; Chang, Yale; Cho, Michael H et al. (2018) Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. Chest 153:65-76
Copeland, Carla R; Nath, Hrudaya; Terry, Nina L J et al. (2018) Paratracheal Paraseptal Emphysema and Expiratory Central Airway Collapse in Smokers. Ann Am Thorac Soc 15:479-484
Diaz, Alejandro A; Strand, Matthew; Coxson, Harvey O et al. (2018) Disease Severity Dependence of the Longitudinal Association Between CT Lung Density and Lung Function in Smokers. Chest 153:638-645
Yun, Jeong H; Lamb, Andrew; Chase, Robert et al. (2018) Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 141:2037-2047.e10
Diaz, Alejandro A; Martinez, Carlos H; Harmouche, Rola et al. (2018) Pectoralis muscle area and mortality in smokers without airflow obstruction. Respir Res 19:62
González, Germán; Ash, Samuel Y; Vegas-Sánchez-Ferrero, Gonzalo et al. (2018) Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. Am J Respir Crit Care Med 197:193-203
Morrow, Jarrett D; Cho, Michael H; Platig, John et al. (2018) Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Hum Genomics 12:1
Lynch, David A; Moore, Camille M; Wilson, Carla et al. (2018) CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. Radiology 288:859-866
Sakornsakolpat, Phuwanat; Morrow, Jarrett D; Castaldi, Peter J et al. (2018) Integrative genomics identifies new genes associated with severe COPD and emphysema. Respir Res 19:46
Fawzy, Ashraf; Putcha, Nirupama; Paulin, Laura M et al. (2018) Association of thrombocytosis with COPD morbidity: the SPIROMICS and COPDGene cohorts. Respir Res 19:20

Showing the most recent 10 out of 238 publications