The mitochondrial network, as a source and victim of oxidative stress has become a dominant player at the origin of many important diseases, among which cardiomyopathy in diabetic and obese patients ranks as one of the most relevant. Our long-term goal is to identify the critical mechanistic steps involved in the production of mitochondrially-derived reactive oxygen (ROS) and nitrogen (RNS) species in common diseases, such as diabetes, obesity, and heart failure. In the emerging view of the mitochondrion as a key signaling organelle in which ROS and RNS fulfill critical physiological roles, we aim to achieve a more comprehensive and quantitative understanding of its role in the (patho)physiology of diabetes related metabolic, contractile, and electrical dysfunction. The main hypotheses of the current proposal are that: 1) Cardiac myocytes from diabetic animals are more susceptible to mitochondrial dysfunction caused by oxidative/nitrosative stress in response to hyperglycemia, and 2) the diabetic heart is more susceptible to the incidence of conduction disturbances, arrhythmias and contractile dysfunction because of its compromised metabolic status. We base our hypotheses on the following observations: 1) the mitochondrial network of a cardiomyocyte is extremely sensitive to environmental perturbations once a threshold level of ROS is attained, leading to a cell-wide collapse of the mitochondrial membrane potential (??m) and myocyte inexcitability;2) ROS and RNS bioavailability are regulated through common mechanisms;3) oscillations of ??m can be readily prevented by exogenous or endogenous ROS scavengers, or nitric oxide production inhibitors;4) oscillations of mitochondrial energetics drive oscillations of surface KATP current and action potentials, affecting the incidence of post-ischemic arrhythmias and contractile dysfunction in the intact heart.

Public Health Relevance

Diabetes is caused by a deficiency in the secretion or action of insulin, affecting >150 million individuals worldwide and nearly 6% of the US population. A recent study by the World Health Organization estimates that those numbers will grow to 366 million by 2030. Achieving the aims of the present study will lead to a better understanding of how mitochondrial dysfunction affects the incidence and severity of cardiac complications among diabetics, and will identify novel targets for therapeutic strategies against this common disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL091923-02
Application #
7908800
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Liang, Isabella Y
Project Start
2009-08-14
Project End
2013-05-31
Budget Start
2010-08-01
Budget End
2011-05-31
Support Year
2
Fiscal Year
2010
Total Cost
$463,163
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kembro, Jackelyn M; Cortassa, Sonia; Lloyd, David et al. (2018) Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability. Sci Rep 8:15422
Motloch, Lukas J; Ishikawa, Kiyotake; Xie, Chaoqin et al. (2017) Increased afterload following myocardial infarction promotes conduction-dependent arrhythmias that are unmasked by hypokalemia. JACC Basic Transl Sci 2:258-269
Karam, Basil S; Chavez-Moreno, Alejandro; Koh, Wonjoon et al. (2017) Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 16:120
Sysa-Shah, Polina; Tocchetti, Carlo G; Gupta, Manveen et al. (2016) Bidirectional cross-regulation between ErbB2 and ?-adrenergic signalling pathways. Cardiovasc Res 109:358-73
Ramirez-Correa, Genaro A; Ma, Junfeng; Slawson, Chad et al. (2015) Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 64:3573-87
Bhatt, Niraj M; Aon, Miguel A; Tocchetti, Carlo G et al. (2015) Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 308:H291-302
Cortassa, Sonia; Caceres, Viviane; Bell, Lauren N et al. (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108:163-72
Tocchetti, Carlo G; Stanley, Brian A; Sivakumaran, Vidhya et al. (2015) Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Clin Sci (Lond) 129:561-74
Aon, Miguel A; Tocchetti, Carlo G; Bhatt, Niraj et al. (2015) Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 22:1563-86
Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro et al. (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20:267-80

Showing the most recent 10 out of 44 publications