The single most important factor in the development of emphysema is cigarette smoke inhalation. The pathogenesis of emphysema is complex, but the currently held hypothesis describes an imbalance between inflammatory cell derived proteases and the antiproteolytic defenses of the lung. The influx of inflammatory cells has been attributed to a number of signaling pathways including, but not limited to, IL-8, IL-6 and TNF-alpha. Perhaps the most potent anaphylatoxins present in the lung are C3a and C5a, complement cleavage fragments produced following complement activation. The complement system plays a key role in host immunity, but excessive or inappropriate activation of the system can lead to direct tissue injury and, via the production of C3a and C5a, excessive inflammation. In vitro and in vivo studies have shown that cigarette smoke and elastases, key mediators of emphysema, can induce activation and cleavage of complement components. Our working hypothesis is that complement effector mechanisms play a role in the development of emphysema. Specifically, we hypothesize that activation of the alternative pathway of complement, by elastases and cigarette smoke, leads to lung inflammation and development of emphysema. We further hypothesize that the production of complement effector proteins, upon activation, such as C3 opsonins, complement anaphylatoxins, and formation of the membrane attack complex directly promote lung inflammation and in doing so promote lung injury and emphysema. We propose to utilize two models of emphysema, the elastase and cigarette exposure models. We propose that complement deficiency/inhibitory strategies applied to these models will provide protection from inflammation and injury, and prevent emphysema.
Specific aims are: 1) Determine complement activation and effector mechanism(s) involved in pathogenesis of emphysema. Complement activation products can affect inflammatory processes, causing tissue damage and promoting inflammation. The role of specific complement effector molecules in causing inflammation, tissue damage and emphysema will be investigated in studies utilizing mice deficient in complement proteins. 2) Determine the efficacy of complement inhibitory proteins for therapy of emphysema. For clinical therapeutic relevance, the effect of complement inhibition on the pathogenesis of emphysema will be investigated by utilizing novel complement inhibitors in concert with elastase model of emphysema. 3) Determine the effect of complement inhibition in a chronic cigarette smoke exposure model of emphysema. In this aim, we will investigate the effect of complement inhibition on lung inflammation, injury and the development of emphysema resulting from chronic smoke inhalation, a model that is clinically relevant and maps the chronic inflammation associated with emphysema.

Public Health Relevance

Emphysema is an inflammatory disease, which is predicted to become the third commonest cause of death, and presents a huge burden in terms of health care costs. Current anti-inflammatory therapies have little efficacy, and the disease progresses unabated. The studies proposed here will investigate the therapeutic efficacy of novel targeted inhibitors of the innate immune system, with the aim to inhibit inflammation and prevent the destructive lung damage, which is the hallmark of emphysema.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL091944-02
Application #
8033680
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Punturieri, Antonello
Project Start
2010-03-01
Project End
2015-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
2
Fiscal Year
2011
Total Cost
$368,750
Indirect Cost
Name
Medical University of South Carolina
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Mulligan, Jennifer K; Patel, Kunal; Williamson, Tucker et al. (2018) C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis. Mucosal Immunol 11:1375-1385
Cheng, Qi; Patel, Kunal; Lei, Biao et al. (2018) Donor pretreatment with nebulized complement C3a receptor antagonist mitigates brain-death induced immunological injury post-lung transplant. Am J Transplant 18:2417-2428
Mulligan, Jennifer K; O'Connell, Brendan P; Pasquini, Whitney et al. (2017) Impact of tobacco smoke on upper airway dendritic cell accumulation and regulation by sinonasal epithelial cells. Int Forum Allergy Rhinol 7:777-785
Holers, V Michael; Tomlinson, Stephen; Kulik, Liudmila et al. (2016) New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin Immunol 28:260-7
Atkinson, Carl; Qiao, Fei; Yang, Xiaofeng et al. (2015) Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury. Circulation 131:1171-80
Mulligan, Jennifer K; Nagel, Whitney; O'Connell, Brendan P et al. (2014) Cigarette smoke exposure is associated with vitamin D3 deficiencies in patients with chronic rhinosinusitis. J Allergy Clin Immunol 134:342-9
Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel (2014) Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J Biol Chem 289:14534-46
Woodell, Alex; Coughlin, Beth; Kunchithapautham, Kannan et al. (2013) Alternative complement pathway deficiency ameliorates chronic smoke-induced functional and morphological ocular injury. PLoS One 8:e67894
Ayers, Chris M; Schlosser, Rodney J; O'Connell, Brendan P et al. (2011) Increased presence of dendritic cells and dendritic cell chemokines in the sinus mucosa of chronic rhinosinusitis with nasal polyps and allergic fungal rhinosinusitis. Int Forum Allergy Rhinol 1:296-302
Sun, Shihui; Wang, Hanbin; Zhao, Guangyu et al. (2011) Complement inhibition alleviates paraquat-induced acute lung injury. Am J Respir Cell Mol Biol 45:834-42

Showing the most recent 10 out of 11 publications