Pressure overload-induced cardiac hypertrophy due to valvular or hypertensive heart diseases is one of the most common causes of congestive heart failure in the U.S. During the last decade, many efforts have been focused on the elucidation of the signaling pathways mediating the complex response of cardiomyocytes to various hypertrophic stimuli and the progression from cardiac hypertrophy to heart failure. No single pathway seems to regulate cardiac hypertrophy alone. Rather, it appears more likely that each pathway operates as a component of an orchestrated hypertrophic network. In recent years, potential anti-hypertrophic and inhibitory feedback signaling pathways have been discovered. Augmenting these negative regulators, rather than inhibiting the positive regulators, may be a viable anti-hypertrophic strategy. Among these genes, Eya2 (eyes absent 2 homolog) was of particular interest. We propose to further characterize molecular mechanisms underlying the Eya2 activity in hearts, including identification of down-stream signaling pathways affected by Eya2. This study will reveal novel signaling pathways in the context of cross talks between numerous hypertrophic and anti-hypertrophic signaling pathways. We therefore propose the following specific aims:
SPECIFIC AIM 1 : Define the direct transcriptional targets of Eya2.
SPECIFIC AIM 2 : Define the role of Eya2 in cardiac metabolism.
SPECIFIC AIM 3 : Define the physiological consequences of Eya2 overexpression and inhibition. Dissecting the molecular pathways underpinning Eya2 activity has the potential of identifying novel strategies for the treatment of heart failure.

Public Health Relevance

Cardiac hypertrophy and ensuing heart failure are major causes of morbidity and mortality in the United States accounting for in excess of 300,000 deaths per year. The work proposed in this grant application takes a novel approach of focusing on novel genes that are actively involved in the reversal of hypertrophy. An understanding of the role of these novel and specific signaling pathways linking events at the level of the membranes to the reversal of hypertrophy would help identify targets for future therapeutic efforts.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL093183-02
Application #
7915300
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Adhikari, Bishow B
Project Start
2009-09-01
Project End
2011-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
2
Fiscal Year
2010
Total Cost
$537,956
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Aguettaz, E; Lopez, J J; Krzesiak, A et al. (2016) Axial stretch-dependent cation entry in dystrophic cardiomyopathy: Involvement of several TRPs channels. Cell Calcium 59:145-155
Lee, Ahyoung; Oh, Jae Gyun; Gorski, Przemek A et al. (2016) Post-translational Modifications in Heart Failure: Small Changes, Big Impact. Heart Lung Circ 25:319-24
Chen, Jiqiu; Hammoudi, Nadjib; Benard, Ludovic et al. (2016) The Probability of Inconstancy in Assessment of Cardiac Function Post-Myocardial Infarction in Mice. Cardiovasc Pharm Open Access 5:
Jeong, Dongtak; Lee, Min-Ah; Li, Yan et al. (2016) Matricellular Protein CCN5 Reverses Established Cardiac Fibrosis. J Am Coll Cardiol 67:1556-1568
Jang, Seung Pil; Oh, Jae Gyun; Kang, Dong Hoon et al. (2016) A Decoy Peptide Targeted to Protein Phosphatase 1 Attenuates Degradation of SERCA2a in Vascular Smooth Muscle Cells. PLoS One 11:e0165569
Aguero, Jaume; Ishikawa, Kiyotake; Hadri, Lahouaria et al. (2016) Intratracheal Gene Delivery of SERCA2a Ameliorates Chronic Post-Capillary Pulmonary Hypertension: A Large Animal Model. J Am Coll Cardiol 67:2032-46
BĂ©nard, Ludovic; Oh, Jae Gyun; Cacheux, Marine et al. (2016) Cardiac Stim1 Silencing Impairs Adaptive Hypertrophy and Promotes Heart Failure Through Inactivation of mTORC2/Akt Signaling. Circulation 133:1458-71; discussion 1471
Haghighi, Kobra; Pritchard, Tracy J; Liu, Guan-Sheng et al. (2015) Human G109E-inhibitor-1 impairs cardiac function and promotes arrhythmias. J Mol Cell Cardiol 89:349-59
Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind et al. (2015) Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. Biochim Biophys Acta 1853:2870-84
Kho, Changwon; Lee, Ahyoung; Jeong, Dongtak et al. (2015) Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nat Commun 6:7229

Showing the most recent 10 out of 67 publications