Bone marrow transplantation (BMT) represents the best chance for cure for a large number of malignant and non-malignant hematologic diseases. However, BMT implementation is currently limited by the many critical complications that accompany this potentially life-saving therapy. This is especially true for the majority of patients (70-80%) who lack MHC-matched sibling donors, and thus face risky, unrelated and/or MHC-mismatched 'alternative-donor'transplants (AD-BMT). Three major complications have plagued the implementation of AD-BMT. They are: (1) The increased risk of graft rejection. (2) The high rate of acute graft-versus-host-disease (aGvHD) that occurs in the setting of MHC-mismatched BMT;and (3) the profound immunosuppression that patients face after transplant, which renders them highly susceptible to infectious and malignant death in the immediate and long-term post-transplant periods. Prevention and treatment of these three complications represents the major unmet clinical need in BMT. One of the most significant barriers to progress in addressing these complications has been the lack of a preclinical model through which novel biologic therapeutic strategies, developed for human use, can be thoroughly and mechanistically investigated prior to clinical trials. Thus, due to the fact that (1) most novel therapies for BMT (including T cell costimulation blockade, T cell adhesion blockade and adoptive immunotherapy with regulatory T cells) cannot be accurately tested in either murine or canine models for aGvHD and (2) there has been no other translational BMT model available to test these biologics prior to clinical use, they have remained under-analyzed and under-utilized in clinical BMT, despite their burgeoning use in other disease states. In order to address the unmet need for their detailed, translational and mechanistic investigation we have developed a novel primate model of AD-BMT, capable both of dissecting mechanism as well as providing the critical translational bridge to clinical application of novel therapies. In this proposal, we describe experiments using the primate model which will determine both mechanism and efficacy of T cell costimulation blockade, T cell adhesion blockade, and regulatory T cell adoptive immunotherapy on the outcome of AD-BMT.

Public Health Relevance

Bone marrow transplantation (BMT) is the treatment of choice for many of the thousands of pediatric and adult patients each year who are diagnosed with both malignant and non-malignant hematologic diseases, including leukemia, aplastic anemia, sickle cell disease, as well as the genetic immunodeficiencies and other inborn errors of metabolism. While BMT represents the best hope for cure for these devastating disorders, it is a treatment that is fraught with complications, which continue to severely limit its wide-spread application, especially for the large majority of patients (70-80%) which lack an MHC-matched sibling bone marrow donor and thus must be transplanted using an 'alternative-donor BMT'(AD-BMT): while some of these patients without a matched sibling donor will find a highly matched unrelated donor from the registry, the wait-time to activate these donors is often prohibitive (for patients with the most aggressive malignant diseases), and many minority populations still lack adequate donors in the registry, making them far less likely to find a matched unrelated donor than patients from the ethnic majority. This research proposal thus has direct relevance to world-wide public health, in that it seeks to understand the mechanisms and efficacy of new biologic therapies for AD-BMT, in order to develop safer, and more efficacious therapeutic regimens for the thousands of patients requiring this treatment each year.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
7R01HL095791-05
Application #
8604726
Study Section
Transplantation, Tolerance, and Tumor Immunology (TTT)
Program Officer
Wagner, Elizabeth
Project Start
2010-02-10
Project End
2015-01-31
Budget Start
2014-02-10
Budget End
2015-01-31
Support Year
5
Fiscal Year
2014
Total Cost
$781,408
Indirect Cost
$303,385
Name
Seattle Children's Hospital
Department
Type
DUNS #
048682157
City
Seattle
State
WA
Country
United States
Zip Code
98105
Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub et al. (2018) Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T. Int J Mol Sci 19:
Colonna, Lucrezia; Peterson, Christopher W; Schell, John B et al. (2018) Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 9:4438
Ordovas-Montanes, Jose; Dwyer, Daniel F; Nyquist, Sarah K et al. (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560:649-654
Mead, Benjamin E; Ordovas-Montanes, Jose; Braun, Alexandra P et al. (2018) Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types. BMC Biol 16:62
Taraseviciute, Agne; Tkachev, Victor; Ponce, Rafael et al. (2018) Chimeric Antigen Receptor T Cell-Mediated Neurotoxicity in Nonhuman Primates. Cancer Discov 8:750-763
Martin-Gayo, Enrique; Cole, Michael B; Kolb, Kellie E et al. (2018) A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 19:10
Kean, Leslie S (2018) Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 131:2630-2639
Kean, Leslie S; Turka, Laurence A; Blazar, Bruce R (2017) Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 276:192-212
Shalek, Alex K; Benson, Mikael (2017) Single-cell analyses to tailor treatments. Sci Transl Med 9:
Tkachev, Victor; Furlan, Scott N; Watkins, Benjamin et al. (2017) Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant. Sci Transl Med 9:

Showing the most recent 10 out of 30 publications