Our goal is to define the roles of Pten phosphorylation remodeling in hematopoietic stem cell (HSC) regulation. Pten, a tumor suppressor, has both lipid and protein phosphatase activities that inhibit PI3K/Akt and Fak-MAPK signaling respectively. It regulates many aspects of cell behavior, including proliferation, survival, adhesion and migration.1-4 The phosphatase activities of Pten are regulated by its c-terminal tail phosphorylation.5, 6 In addition, Pten many also have some phosphatase-independent functions. Many of Pten's biological functions are dependent upon protein-protein interactions which are mediated by its PDZ-motif.7 Knockout of Pten in mouse hematopoietic tissues results in abnormal activation of PI3K/Akt and Src signaling, which leads to uncontrolled HSC activation (G0 to G1 transition) and mobilization, followed by HSC decline. These mice develop myeloproliferative disorder (MPD) followed by acute myeloid/T lymphoid leukemia. Although Pten mutations are not commonly found in hematopoietic malignancies, including leukemia, p-Pten (the phosphorylated form of Pten) levels are increased in the abnormal blasts of most leukemic patients'bone marrow samples. Phosphorylation of Pten's c-terminal tail (ser380, thr382, and thr383) leads to a conformation change which may result in the blocking of its ability to bind to other partner proteins, the reduction of Pten phosphatase activity, and/or the alteration of the lifespan of the Pten protein. Our recent studies have suggested that the phosphorylation of Pten's c-terminal tail may not affect its lipid phosphatase activity but significantly compromises its protein phosphatase activity. The non-phosphorylated form of Pten (non-p-Pten) inhibits Src/Fak/p38 activity, thus repressing cell migration/invasiveness and inducing cell:cell contact inhibition of growth. p-Pten might have a dominant-negative function which induces cell-contact-related Src/Fak/p38 activation. We found that non-p-Pten is expressed in HSCs, while p- Pten levels are increased when HSCs enter the cell cycle;both of these events correspond to increased p- Src, p-Fak and p-p38 levels. Transduced over-expression of non-p-Pten preserves HSCs in a bone marrow niche-dependent manner, whereas transduced over-expression of p-Pten induces HSC/progenitors (HSC/Ps, from wild-type mice which have endogenous Pten expression) to differentiate to myeloid precursors. We propose that non-p-Pten maintains HSC quiescence and self-renewal ability through inducing cell:cell (HSCs and niche cells) contact-induced inhibition of growth by inhibiting Src/Fak/p38 signaling activities, whereas Pten's c-terminal phosphorylation alters its ability to bind to its partners and compromises its protein phosphatase activity. p-Pten promotes opposite functions to these through inducing cell:cell contact-related Src/Fak/p38 signaling. These studies will provide insights into how quiescent HSCs become activated and expand in number, and how we might be able to induce activated HSCs to revert back into quiescence in order to enhance their engraftment ability. This should greatly help our ability to expand HSCs in vitro and hence improve the outcome of clinical stem cell transplantation. It might be also help us to understand the nature of Pten c-terminal phosphorylation in leukemogenesis.

Public Health Relevance

This proposed study will provide insights into how quiescent hematopoietic stem cell be induced cell cycle entry and proliferation, and how stem cell function is regulated by PTEN c-terminal phosphorylation. The predicted outcome will greatly help our ability to expand hematopoietic stem cells in vitro and hence improve the outcome of clinical stem cell transplantation.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Hematopoiesis Study Section (HP)
Program Officer
Thomas, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loyola University Chicago
Schools of Medicine
United States
Zip Code
Xin, Junping; Breslin, Peter; Wei, Wei et al. (2017) Necroptosis in spontaneously-mutated hematopoietic cells induces autoimmune bone marrow failure in mice. Haematologica 102:295-307
Xin, J; You, D; Breslin, P et al. (2017) Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia 31:1154-1165
Li, Jing; Zhang, Jun; Tang, Minghui et al. (2016) Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 34:2130-44
Cannova, Joseph; Breslin S J, Peter; Zhang, Jiwang (2015) Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front Med 9:288-303
Shang, Na; Arteaga, Maribel; Zaidi, Ali et al. (2015) FAK is required for c-Met/?-catenin-driven hepatocarcinogenesis. Hepatology 61:214-26
You, Dewen; Xin, Junping; Volk, Andrew et al. (2015) FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells. Cell Rep 10:2055-68
Zhang, Jun; Seet, Christopher S; Sun, Clare et al. (2013) p27kip1 maintains a subset of leukemia stem cells in the quiescent state in murine MLL-leukemia. Mol Oncol 7:1069-82
Jiang, Xi; Huang, Hao; Li, Zejuan et al. (2012) Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 22:524-35
Li, Zejuan; Huang, Hao; Chen, Ping et al. (2012) miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun 3:688
Toth, George; Zraly, Claudia B; Thomson, Tricia L et al. (2011) Congenital anomalies and rhabdoid tumor associated with 22q11 germline deletion and somatic inactivation of the SMARCB1 tumor suppressor. Genes Chromosomes Cancer 50:379-88

Showing the most recent 10 out of 11 publications