By serving as the major conduits for communication between the interior of cells and the extracellular environment, integrin ?/? heterodimeric adhesion receptors are indispensable for many cellular responses including adhesion, migration, proliferation and survival. On vascular cells, optimal integrin function depends on thei ability to undergo activation, a transition from a low to a high affinity/avidity state for their cognate ligands. Such activation of integrins depends on the binding of proteins to the short cytoplasmic tail of the integrin ? subunit. Over the past 5 years, information has exploded to indicate that kindlins, a three member family of FERM domain proteins, are essential for appropriate integrin activation. This statement is supported by numerous in vitro studies, the phenotypes of mice in which the genes of each of the kindlins has been inactivated, and the pathologies associated with the deficiencies of the kindlins in humans. Humans with deficiencies of kindlin-3 (K3), the focus of this application, present severe bleeding, compromised immunity leading to increased susceptibility to infections, osteopetrosis and abnormal erythrocytes. Despite the clear significance of K3 in vascular biology and pathology, it is the kindlin whose structure- function relationships are least understood at a molecular level. Adding to the uncertainties regarding the roles of K3 is our recent findings that K3 is not restricted to hematopoietic cells but is also expressed in endothelial cells and breast cancer cells where it influences the properties of both cell types. The goal of this application is to provide new insights into the structure, function and biology K3 using molecular, cellular and in vivo approaches. Our driving hypothesis is that K3 has both integrin-dependent and integrin-independent functions, which allows it to mediate responses in vascular cells, including endothelial cells, erythrocytes and cancer cells. To test this hypothesis, unique mouse models (knock-in mice expressing an integrin defective K3 as well as the potential to knock-out K3 in specific tissues) and cell models where K3 can be expressed and support integrin activation. With these tools in hand, the following specific aims are proposed.
Aim 1 : Analysis of the role of specific subdomains of K3, its posttranslational modification, and its interaction with established as well as previously unconsidered binding partners, ADAP and actin, in controlling its function.
Aim 2 : Using our unique mouse strains, the role of K3 in endothelial cell responses, including its ability to mediate angiogenesis, and in controlling erythroid maturation will be dissected. In each case, it will be determined whether the roles of K3 are integrin-dependent and independent.
Aim 3 : With compelling preliminary data showing that K3 is a breast tumor promoter, the effects of K3 manipulation on tumor growth and metastasis will be evaluated in murine models, and its correlation with breast tumor grade and subtype will be assessed. Overall, these studies will address unresolved issues regarding the mechanism-of-action and identify previously unconsidered functions of K3.

Public Health Relevance

Studies of humans have demonstrated that a deficiency of a single molecule, kindlin-3, leads to a variety of symptoms including bleeding, high susceptibility to infections, increase bone density and red cell abnormalities. This same molecule is also expressed at very high levels in human breast cancer tissue and furthermore increases the growth and metastasis of breast cancer in mouse models. We seek to determine how this single molecule exerts its broad range of functions. Our studies may identify new targets for the diagnosis, treatment and prevention of many diseases in which kindlin-3 exerts its effects ranging from cardiovascular disease to cancer.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Kindzelski, Andrei L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Plow, Edward F; Wang, Yunmei; Simon, Daniel I (2018) The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood 131:1899-1902
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Szpak, Dorota et al. (2018) The Kindlin-2 regulation of epithelial-to-mesenchymal transition in breast cancer metastasis is mediated through miR-200b. Sci Rep 8:7360
Plow, Edward F (2017) An enlightening year in vascular biology. Curr Opin Hematol 24:222-223
Jawhara, Samir; Pluskota, Elzbieta; Cao, Wei et al. (2017) Distinct Effects of Integrins ?X?2 and ?M?2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 85:
Pluskota, Elzbieta; Bledzka, Kamila M; Bialkowska, Katarzyna et al. (2017) Kindlin-2 interacts with endothelial adherens junctions to support vascular barrier integrity. J Physiol 595:6443-6462
Bledzka, Kamila; Schiemann, Barbara; Schiemann, William P et al. (2017) The WAVE3-YB1 interaction regulates cancer stem cells activity in breast cancer. Oncotarget 8:104072-104089
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Bialkowska, Katarzyna et al. (2017) Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1-Mediated Macrophage Infiltration. Cancer Res 77:5129-5141
Wang, Yunmei; Gao, Huiyun; Shi, Can et al. (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIb?. Nat Commun 8:15559
Meller, Julia; Chen, Zhihong; Dudiki, Tejasvi et al. (2017) Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight 2:
Hirbawi, Jamila; Bialkowska, Katarzyna; Bledzka, Kamila M et al. (2017) The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 292:14258-14269

Showing the most recent 10 out of 37 publications