Heart failure is the most common reason for hospitalization in the United States among those older than 65 years, and this statistic is expected to grow as the population ages. Overactivity of the sympathetic nervous system (SNS) is a cardinal manifestation of the heart failure syndrome, and a strong predictor of morbidity and mortality. Recent studies suggest that altered neurochemical mechanisms in the brain contribute to the augmented SNS activity in heart failure. Several excitatory substances appear in the brain in excess quantities in heart failure. These include angiotensin II (ANG II), aldosterone (ALDO) and the pro-inflammatory cytokines (PIC). All three act to increase the production of reactive oxygen species in the brain, but beyond that it is not at all clear how they activate the SNS. We recently found that blocking one of the three major components of the mitogen-activated protein kinase (MAPK) intracellular signaling cascade in the brain substantially reduced SNS activity in rats with heart failure. These MAPKs are sensitive to the presence of reactive oxygen species, respond to ANG II, ALDO and PIC, and, when activated, lead to the production of more excitatory neurochemical substances that may contribute to persistent activation of the SNS, which is typical of heart failure. The overall goal of this project is to determine to what extent the three major MAPK signaling pathways contribute to the excitatory neurochemical milieu in a key cardiovascular regulatory center of the brain, the paraventricular nucleus of hypothalamus (PVN), that drives SNS activity in heart failure. In rats with systolic heart failure and in normal rats treated with ANG II, ALDO and PIC to induce MAPK activity, we will determine: 1) the effects of the three major MAPK signaling pathways on the expression of excitatory mediators in the PVN;2) the effects of MAPK signaling in the PVN on SNS activity;3) the phenotypes of the cells in PVN - neurons, microglia, astrocytes, and perivascular macrophages - that express MAPK signaling, and their influences on the production of excitatory mediators and sympathetic excitation. A combination of molecular, immunohistochemical, and electrophysiological techniques will be used to elucidate the mechanisms by which brain MAPK signaling influences SNS activity. We hope these studies will identify novel targets for therapeutic intervention in systolic heart failure.

Public Health Relevance

This project examines the role of a critical intracellular signaling mechanism, the mitogen-activated protein kinases, in the upregulation of excitatory mediators (angiotensin II, aldosterone, and pro-inflammatory cytokines) in the brain, and the subsequent activation of the sympathetic nervous system, in a rat model of systolic heart failure. Learning more about the central nervous system mechanisms regulating sympathetic drive in heart failure may help identify novel approaches to the treatment of this devastating disorder.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Wang, Lan-Hsiang
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Internal Medicine/Medicine
Schools of Medicine
Iowa City
United States
Zip Code
Xue, Baojian; Thunhorst, Robert L; Yu, Yang et al. (2016) Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension. Hypertension 67:163-70
Xue, Baojian; Yu, Yang; Zhang, Zhongming et al. (2016) Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation. Hypertension 67:970-6
Yu, Yang; Wei, Shun-Guang; Zhang, Zhi-Hua et al. (2016) ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction. Am J Physiol Heart Circ Physiol 310:H732-9
Wei, Shun-Guang; Yu, Yang; Weiss, Robert M et al. (2016) Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats. Hypertension 67:229-36
Wei, Shun-Guang; Yu, Yang; Weiss, Robert M et al. (2016) Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. Am J Physiol Heart Circ Physiol 311:H871-H880
Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang et al. (2015) Activation of central PPAR-? attenuates angiotensin II-induced hypertension. Hypertension 66:403-11
Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua et al. (2015) Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension 65:1126-33
Wei, Shun-Guang; Zhang, Zhi-Hua; Yu, Yang et al. (2014) Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-?, and MAP kinase signaling. Am J Physiol Heart Circ Physiol 307:H1643-54
Yu, Yang; Xue, Bao-Jian; Zhang, Zhi-Hua et al. (2013) Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 61:842-9
Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G et al. (2013) Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 62:118-25

Showing the most recent 10 out of 11 publications