The goal of this proposal is to obtain mechanistic insights into the role of cardiac mitochondria in defining the substrate for atrial fibrillation (AF), the most common arrhythmia encountered in clinical practice. With a projected 6-fold increase in the prevalence and a cost exceeding $15 billion per year, AF remains a major national health problem. Despite the recognition that aging increases susceptibility of the atria to fibrillation, with a 100 fold higher prevalence in the older-elderly compared to young adults, the molecular bases for this remains unknown. Changes in hemodynamic, vascular, and metabolic factors that accompany aging or associated disease contribute to functional and structural atrial remodeling promoting cardiomyocytes loss and fibrosis that increases susceptibility to fibrillation, however, the molecular bases for such alterations contributing to the progression of atrial dysfunction are not well defined. In our preliminary studies, using human atrial tissue, a distinct transcriptional downregulation of genes regulating mitochondrial energetics and signaling pathways involved in energy production and utilization, cell loss and fibrosis was demonstrated with aging and AF. Additionally, functional defects with impaired capacity to maintain cellular energetics and ionic homeostasis under stress were demonstrated in senescent mitochondria that can be ameliorated by modulating mitochondrial membrane permeability. Based on these, we hypothesize that susceptibility to AF in the elderly results from diminished mitochondrial functional reserves in the atria that promote cardiomyocyte loss and fibrosis due to enhanced sensitivity of the myocardium to energetic failure, calcium overload and oxidative injury during stress, thus facilitating development and progression of the substrate for AF. We propose 1) to identify differences in atrial structure and function, energetics and mitochondrial susceptibility to stress in patients with low or high risk for the development of AF and those with paroxysmal, persistent or permanent AF;2) to identify mechanisms underlying atrial energetic deficits and mitochondrial dysfunction predisposing to enhanced cell loss and fibrosis;and 3) to determine the protective role of mitochondrial modulation against mitochondrial and cellular injury during metabolic stress in patients at risk for or with AF.
These aims will be achieved using atrial tissue obtained from patients undergoing coronary artery bypass surgery without or with risk factors for AF (heart failure, hypertension, or mitral regurgitation) or a history of paroxysmal, persistent or permanent AF. An integrative approach combining clinical information with in vivo and in vitro atrial structural and functional data obtained by imaging with comprehensive cellular and mitochondrial studies assessing differences in ultrastructural, functional, molecular, genetic and proteomic changes in atrial tissue between those at risk of AF, who develops AF following surgery and those with AF, not only is highly innovative but also of high clinical significance. The results will provide new insights into the role of mitochondria priming the substrate for AF and identify novel targets for the development of therapeutics toward prevention of AF.

Public Health Relevance

This study will identify the role of mitochondrial dysfunction in aging-associated susceptibility to atrial fibrillation. A comprehensive multiparametric approach will be used to integrate expertise from clinical cardiology, cardiac electrophysiology, cardiac surgery, imaging, mitochondrial physiology, aging, genomics and proteomics for analysis of atrial structural and functional changes with aging, development of risk factors for AF and with atrial fibrillation. These studies ranging from in vivo, in vitro, cellular and mitochondrial levels with direct correlation with the changes in expression of genes and proteins regulating mitochondrial function will provide novel insights into the role of mitochondria in predisposition of the senescent heart to arrhythmogenesis and may lead to recognition of new targets to prevent atrial remodeling that predispose to atrial fibrillation. This information is of high public health interest, since the growing epidemic of atrial fibrillation in the elderly continues to contribute to increased risk for stroke, disability and death in the elderly.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-N (F1))
Program Officer
Schwartz, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Arizona
United States
Zip Code
Jahangir, A; Mirza, M; Shahreyar, M et al. (2018) Presence of obesity is associated with lower mortality in elderly patients with implantable cardioverter defibrillator. Int J Obes (Lond) 42:169-174
Rizvi, Farhan; Siddiqui, Ramail; DeFranco, Alessandra et al. (2018) Simvastatin reduces TGF-?1-induced SMAD2/3-dependent human ventricular fibroblasts differentiation: Role of protein phosphatase activation. Int J Cardiol 270:228-236
Ross, Gracious R; Bajwa Jr, Tanvir; Edwards, Stacie et al. (2017) Enhanced store-operated Ca2+ influx and ORAI1 expression in ventricular fibroblasts from human failing heart. Biol Open 6:326-332
Ortiz, Daniel; Singh, Maharaj; Jahangir, Arshad et al. (2017) Bivalirudin versus unfractionated heparin during peripheral vascular interventions: A Propensity-matched Study. Catheter Cardiovasc Interv 89:408-413
Sultan, Sulaiman; Murarka, Shishir; Jahangir, Ahad et al. (2017) Chelation therapy in cardiovascular disease: an update. Expert Rev Clin Pharmacol 10:843-854
Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka et al. (2016) Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation. Am J Physiol Heart Circ Physiol 311:H54-63
Turagam, Mohit K; Mirza, Mahek; Werner, Paul H et al. (2016) Circulating Biomarkers Predictive of Postoperative Atrial Fibrillation. Cardiol Rev 24:76-87
Rizvi, Farhan; DeFranco, Alessandra; Siddiqui, Ramail et al. (2016) Chamber-specific differences in human cardiac fibroblast proliferation and responsiveness toward simvastatin. Am J Physiol Cell Physiol 311:C330-9
Negmadjanov, Ulugbek; Godic, Zarko; Rizvi, Farhan et al. (2015) TGF-?1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS One 10:e0123046
Jahangir, Arshad; Jain, Renuka (2015) Strain Echocardiography and LQTS Subtypes: Mechanical Alterations in an Electrical Disorder. JACC Cardiovasc Imaging 8:511-513

Showing the most recent 10 out of 23 publications