Hematopoietic stem cells (HSCs) and progenitors (HPCs) are bone-marrow derived cells that give rise to terminally differentiated circulating blood cells. Recent work has implicated these cells in the repair of parenchymal tissue in the setting of inflammation, but the signals that regulate this trafficking are poorly understood. In other NIH funded worked we discovered and cloned CCR2, the chemokine receptor that regulates monocyte migration to MCP-1, and showed that CCR2-/- mice are protected in murine models of atherosclerosis. In preliminary, unpublished results we have now found that CCR2 is expressed on subsets of primitive HSCs as well as some myeloid HPCs. CCR2 mediates the chemotaxis of c-Kit+Lin- bone marrow derived cells to MCP-1 and MCP-3. Following instillation of thioglycollate WT, but not CCR2-/- stem cells were actively recruited to the peritoneum, and to the liver following administration of acetaminophen. Significantly, infusion of CCR2+/+, but not CCR2-/- HSCs/HPCs accelerated the resolution of liver damage, and the recruited cells expressed genes characteristic of the M2 macrophage phenotype. Building on these recent findings, we propose three interrelated specific aims to define the role of CCR2 in HSC/HPC trafficking, and their potential roles in the resolution of inflammation and injury.
In Specific Aim 1 we will quantify expression of CCR2 on early hematopoietic stem cells. We will test the hypothesis that CCR2 is expressed on true, self-replicating stem cells, and mediates their chemotaxis to sites of tissue inflammation and injury. Using novel CCR2/RFP knock-in mice, we will quantify the expression of CCR2 on HSCs/HPCs in all branches of the hematopoietic tree in mice and determine whether activation of CCR2 mobilizes HSCs and HPCs from bone marrow.
In Specific Aim 2 we will determine whether CCR2-mediated recruitment of HSCs or HPCs contributes to the resolution of inflammation and ischemic injury in models of acute (acetaminophen)- and chronic (carbon tetrachloride)-induced hepatotoxicity, will determine the fate of the recruited stem and progenitor cells, and will test the hypothesis that enriching HSCs/HPCs for those that express CCR2 will significanlty enhances tissue repair.
In Specific Aim 3 we will turn our attention to a model of experimental myocardial infraction in mice, and will determine if CCR2+ or CCR2- HSCs/HPCs accelerate recovery of cardiac function, and whether CCR2 antagonists reduce inflammation and enhance functional recovery. Completion of the work described above will identify the signals regulating the homing of bone marrow stem and progenitor cells to injured tissue, and further our mechanistic understanding of their role in tissue repair and regeneration.

Public Health Relevance

Work proposed in this application will help to identify a new and mechanisitic marker for hematopoietic (ie., bone marrow derived) stem cells. Transfusion of such cells has the potential to enhance treatment of important human diseases, such as liver failure and acute myocardial infarction. The preliminary results described in this application identify CCR2, a well-characterized chemokine receptor, as being critical for the mobilization of stem cells to sites of inflammation and injury. Completion of the Specific Aims of this application will greatly accelerate efforts to optimize the therapeutic use of bone marrow stem cells.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL102475-03
Application #
8458575
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Thomas, John
Project Start
2011-05-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$454,580
Indirect Cost
$216,580
Name
J. David Gladstone Institutes
Department
Type
DUNS #
099992430
City
San Francisco
State
CA
Country
United States
Zip Code
94158
Ryu, Jae Kyu; Petersen, Mark A; Murray, Sara G et al. (2015) Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 6:8164
Hsieh, Christine L; Niemi, Erene C; Wang, Sarah H et al. (2014) CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury. J Neurotrauma 31:1677-88
Severa, Martina; Islam, Sabina A; Waggoner, Stephen N et al. (2014) The transcriptional repressor BLIMP1 curbs host defenses by suppressing expression of the chemokine CCL8. J Immunol 192:2291-304
Cherney, Robert J; Mo, Ruowei; Yang, Michael G et al. (2014) Alkylsulfone-containing trisubstituted cyclohexanes as potent and bioavailable chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 24:1843-5
Charo, Israel F (2013) Blinding the monocytes to protect the heart. Circulation 127:2006-8
Sullivan, Timothy; Miao, Zhenhua; Dairaghi, Daniel J et al. (2013) CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol 305:F1288-97
Garcia, Jenny A; Pino, Paula A; Mizutani, Makiko et al. (2013) Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol 191:1063-72
Sennlaub, Florian; Auvynet, Constance; Calippe, Bertrand et al. (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5:1775-93
Varvel, Nicholas H; Grathwohl, Stefan A; Baumann, Frank et al. (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109:18150-5
Terrando, Niccolò; Eriksson, Lars I; Ryu, Jae Kyu et al. (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70:986-995