In fetal sheep, cardiomyocytes gradually cease dividing and become binucleated (terminal differentiation) at ~100 days of a 145 day gestational period. Once cardiac myocytes terminally differentiate they can no longer divide but they retain a remarkable capacity to enlarge. The hallmark of this maturation step is binucleation in sheep which occurs mostly before birth. We discovered that 3,3',5-tri-iodo-L-thyronine (T3), is a powerful inhibitor of proliferation in 135 day ovine cardiomyocytes in vitro. It appears that cortisol stimulates the conversion of the less potent thyroxine (T4) to the more potent T3 near term, causing T3 levels to rise-putting the brakes on cardiomyocyte proliferation. Because of its coincidental timing, T3 has become a primary candidate for being the most powerful regulator of the maturation of the myocardium. It may also terminate proliferation long before the heart has generated its optimal number of cardiomyocytes. Thus, T3 regulation has clinical relevance for the relatively common disease conditions when maternal thyroxine levels are outside the normal range. We request funds to study the role of thyroid hormone in regulating the maturation of the fetal myocardium in sheep.
Aim 1 : Determine the degree to which T3 suppresses proliferation and promotes binucleation/terminal differentiation of fetal cardiac myocytes in vivo. Hypothesis: T3 will depress the rates of proliferation of intact fetal ovine cardiomyocytes, increase the rate of terminal differentiation and stimulate cardiomyocyte maturation.
Aim 2 : Determine the developmental expression and temporal activation of key signaling proteins (MAPK &PI3K pathways) following exposure to T3 in fetal cardiac myocytes in vitro. Hypothesis: Both MAPK and PI3K are activated by T3, but proliferation is regulated by MAPK and its interaction with p21. The importance of the MAPK and PI3K signaling cascades in regulating proliferation under the influence of T3 will be evaluated by measuring the activation levels of ERK, AKT, mTOR and p70S6K, as well as key cell cycle proteins. """"""""Non-genomic"""""""" pathways will also be evaluated.
Aim 3 : Determine the degree to which the fetal myocardium mal-adapts to right ventricular systolic load when T3 concentrations are elevated in vivo. Hypothesis: T3 treatment suppresses the normal proliferative response of cardiomyocytes to right ventricular (RV) systolic load and further stimulates the rate of binucleation and maturation of cardiomyocytes.
Aim 4 : Determine the degree to which cardiomyocyte growth and maturation are maintained during the early postnatal transition in fetuses that have been exposed to high T3 in utero. Hypothesis: The normal postnatal T3 surge will prevent suppressed cardiomyocyte numbers to regenerate during the immediate postnatal period, even in the presence of elevated levels of IGF-1. This study will determine the role of thyroid hormone in regulating the maturation of the myocardium before birth. Once completed the studies will indicate the degrees to which classical and non- classical signaling pathways regulate the T3 stimulated changes in cardiomyocyte behavior before birth.

Public Health Relevance

This study will determine the relevance of fetal T3 levels in regulating the proliferation of working cardiomyocytes before birth. Because maternal thyroid hormones cross the placenta and influence fetal levels, maternal thyroid disease may seriously affect heart cardiomyocyte endowment. Low cardiomyocyte numbers could lead to a myocardium that is disadvantaged for the work it will perform in extrauterine life.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL102763-01
Application #
7866893
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Kaltman, Jonathan R
Project Start
2010-04-19
Project End
2014-02-28
Budget Start
2010-04-19
Budget End
2011-02-28
Support Year
1
Fiscal Year
2010
Total Cost
$372,580
Indirect Cost
Name
Oregon Health and Science University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Barry, James S; Rozance, Paul J; Brown, Laura D et al. (2016) Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction. Exp Biol Med (Maywood) 241:839-47
Thornburg, K L (2015) The programming of cardiovascular disease. J Dev Orig Health Dis 6:366-76
Thornburg, Kent L; Marshall, Nicole (2015) The placenta is the center of the chronic disease universe. Am J Obstet Gynecol 213:S14-20
Chattergoon, N N; Louey, S; Stork, P J et al. (2014) Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am J Physiol Heart Circ Physiol 307:H1216-25
Thornburg, Kent L; Louey, Samantha (2013) Uteroplacental circulation and fetal vascular function and development. Curr Vasc Pharmacol 11:748-57
Davidson, Brian P; Giraud, George D (2012) Left ventricular function and the systemic arterial vasculature: remembering what we have learned. J Am Soc Echocardiogr 25:891-4
Chattergoon, Natasha N; Giraud, George D; Louey, Samantha et al. (2012) Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 26:397-408
Chattergoon, Natasha N; Louey, Samantha; Stork, Philip et al. (2012) Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 19:642-9
Thornburg, Kent; Jonker, Sonnet; O'Tierney, Perrie et al. (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289-99
Eriksson, Johan G; Kajantie, Eero; Osmond, Clive et al. (2010) Boys live dangerously in the womb. Am J Hum Biol 22:330-5