Vascular permeability (VP) that mediate the exchange of plasma components between the vasculature and tissues, also contributes to angiogenesis and inflammation. A defect in endothelial-barrier results in 'vascular fragility'that often lead to irreversible VP, which is an underlying cause of many clinical conditions such as stroke, pulmonary edema, inflammation, atherosclerosis etc. Despite the fantastic progress in the VP research, the molecular mechanisms regulating endothelial-barrier function remains elusive. Protein kinase-B (Akt) is of great importance in the regulation of VP. This proposal is expected to elucidate how Akt utilizes its signaling partners in the differential regulation of endothelial-barrier in response to agents that augment or arrest VP. Our central hypothesis is that the cooperation between Akt and Src in regulating cytoskeletal and focal adhesion dynamics (via 2-Pix-Rac-GTPase signaling), AJ and TJ turnover (via GSK- 3/2-catenin, FoxO and ETS transcription factors), as well as initiation of a paracrine loop is involved in the coordination of various events in the endothelial-barrier function in response to VEGF (short-term Akt activation) and Ang-1 (long-term Akt activation). The rationale for the proposed research is that, once it is known mechanistically how Akt regulates VP, it is likely that endothelial-barrier function can be either up- or down-regulated therapeutically, which would be of singular importance in the management of a variety of clinical conditions. The combination of work proposed in this application is collectively expected to uncover how Akt modulates endothelial-barrier and VP in vivo in response to VEGF and Ang-1, which will have a positive impact because the identified components will likely provide new targets for preventive and therapeutic interventions. In addition, we expect our results to fundamentally advance the field of endothelial-barrier regulation and VP.
Our specific aims are: (1) Identify the Akt signaling partners and determine the molecular mechanisms through which Akt regulates AJ and TJ protein turnover in response to VEGF and Ang-1. We hypothesize that the regulation of synthesis, interaction and turnover of proteins in adherens and tight-junctions by Akt and Src in response to VEGF and Ang-1 is mediated through GSK32- 2catenin pathway in association with FoxO and ETS. Once we identify GSK3-2catenin pathway as the 'molecular switch'in this differential regulation of VP by Akt, we will seek to confirm those findings in vivo. (2) Identify the Akt signaling partners and determine the molecular mechanisms through which Akt coordinates cytoskeletal and focal adhesion dynamics in response to VEGF and Ang-1. From our preliminary results, we postulate that the events leading to VP, such as expression and/or dynamics of integrins, focal adhesions, cytoskeletal proteins and cortical actin, are dependent on the ability of Akt to differentially modulate 2-Pix-Rac signaling. Once we identify these signaling partners and understand how Akt coordinates cytoskeletal and focal-adhesion dynamics in vitro, we will extend our findings in vivo.

Public Health Relevance

The proposed research is relevant to public health because, once it is known mechanistically how Akt regulates endothelial-barrier function, it is likely that endothelial-barrier can be either up- or down-regulated therapeutically, which would be of singular importance in the management of a variety of clinical conditions. Identifying the molecular mechanisms through which Akt and its signaling partners regulate the sequence of events mediating endothelial-barrier function and vascular permeability represents a substantive departure from the status quo providing novel insights into the overall molecular mechanisms regulating the process. Because there are considerable similarities in molecular mechanisms regulating endothelial-barrier function in various tissues and clinical conditions, we expect that our findings will be relevant to the mission of NIH and be broadly interesting to researchers studying molecular mechanisms regulating endothelial barrier- function and vascular permeability in various physiological and pathological events such as pulmonary edema, stroke and a variety of ischemic and inflammation associated diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Gao, Yunling
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Georgia
Schools of Pharmacy
United States
Zip Code
Gao, Fei; Alwhaibi, Abdulrahman; Sabbineni, Harika et al. (2017) Suppression of Akt1-?-catenin pathway in advanced prostate cancer promotes TGF?1-mediated epithelial to mesenchymal transition and metastasis. Cancer Lett 402:177-189
Gao, Fei; Sabbineni, Harika; Artham, Sandeep et al. (2017) Modulation of long-term endothelial-barrier integrity is conditional to the cross-talk between Akt and Src signaling. J Cell Physiol 232:2599-2609
Al-Azayzih, Ahmad; Missaoui, Wided N; Cummings, Brian S et al. (2016) Liposome-mediated delivery of the p21 activated kinase-1 (PAK-1) inhibitor IPA-3 limits prostate tumor growth in vivo. Nanomedicine 12:1231-1239
Gao, Fei; Artham, Sandeep; Sabbineni, Harika et al. (2016) Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover. Cell Mol Life Sci 73:3917-33
Patel, Ami; Sabbineni, Harika; Clarke, Andrea et al. (2016) Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci 157:52-61
Sabbineni, Harika; Alwhaibi, Abdulrahman; Goc, Anna et al. (2015) Genetic deletion and pharmacological inhibition of Akt1 isoform attenuates bladder cancer cell proliferation, motility and invasion. Eur J Pharmacol 764:208-214
Gao, Fei; Al-Azayzih, Ahmad; Somanath, Payaningal R (2015) Discrete functions of GSK3? and GSK3? isoforms in prostate tumor growth and micrometastasis. Oncotarget 6:5947-62
Goc, Anna; Sabbineni, Harika; Abdalla, Maha et al. (2015) p70 S6-kinase mediates the cooperation between Akt1 and Mek1 pathways in fibroblast-mediated extracellular matrix remodeling. Biochim Biophys Acta 1853:1626-35
Abdalla, Maha; Thompson, LeeAnn; Gurley, Erin et al. (2015) Dasatinib inhibits TGF?-induced myofibroblast differentiation through Src-SRF Pathway. Eur J Pharmacol 769:134-42
Abdalla, Maha; Sabbineni, Harika; Prakash, Roshini et al. (2015) The Akt inhibitor, triciribine, ameliorates chronic hypoxia-induced vascular pruning and TGF?-induced pulmonary fibrosis. Br J Pharmacol 172:4173-88

Showing the most recent 10 out of 25 publications