This application seeks to improve basic understanding of molecular mechanisms that mediate cytoprotective actions of coagulation proteases on cells. Available therapeutic solutions for vascular, thrombotic, and inflammatory diseases are limited and mortality rates remain unacceptably high. Beneficial effects of activated protein C (APC) on cells contrast with pro-inflammatory effects of other coagulation proteases (e.g. thrombin and factor Xa) on cells and initiated novel perspectives on the intricate complex networks of receptor-mediated cross talk in cells. Improving therapeutic success requires a more thorough understanding of the molecular mechanisms involved. This proposal is centered on the endothelial protein C receptor (EPCR), a key cytoprotective receptor. The long-term objectives of this application are to contribute to diagnostic and therapeutic progress for vascular, thrombotic, and inflammatory diseases by advancing knowledge through both basic and translational research. The goal of this application is to gain novel insights into the molecular mechanisms of cytoprotective actions mediated by EPCR. The major focus of this application is on structure- function relationships for EPCR that underlie EPCR's cofactor role in the transduction of clinically relevant APC-mediated cytoprotective effects and on translation of this information into improved therapeutic strategies for thrombotic inflammatory diseases. Novel hypotheses will be tested using biochemical and cellular biology methods.
The specific aims are: 1) To generate engineered EPCR variants with unique properties that will enhance its ability to mediate cytoprotective effects, 2) To characterize the structure-function determinants for EPCR-dependent PAR-1 activation that are responsible for APC-mediated cytoprotective effects on cells, and 3) To define the thrombotic complications associated with """"""""off-target"""""""" Heparin-Induced Thrombocytopenia (HIT) antibodies against PF4-EPCR and PF4-thrombomodulin (TM) complexes. Successful completion of the proposed studies will increase our knowledge and understanding of vascular, thrombotic, and inflammatory diseases and may provide a platform for the development of novel therapeutic strategies for a variety of disorders in which thrombosis, apoptosis and inflammation contribute to pathogenesis.

Public Health Relevance

Vascular, thrombotic, and inflammatory diseases, such as sepsis, heart attack or stroke, will affect most of us at some point in life, with a profound impact on the quality and duration of life thereafter. Available therapeutic solutions are limited and mortality rates remain unacceptably high. Guided by the encouraging beneficial effects of recombinant activated protein C in sepsis and stroke, the proposed studies will identify novel molecular mechanisms and create engineered molecular variants for translational research and potential safer and more effective therapeutic applications.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Spronk, H M H; Padro, T; Siland, J E et al. (2018) Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 118:229-250
Griffin, John H; Zlokovic, Berislav V; Mosnier, Laurent O (2018) Activated protein C, protease activated receptor 1, and neuroprotection. Blood 132:159-169
Adams, G N; Sharma, B K; Rosenfeldt, L et al. (2018) Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J Thromb Haemost 16:2258-2269
Wyseure, Tine; Cooke, Esther J; Declerck, Paul J et al. (2018) Defective TAFI activation in hemophilia A mice is a major contributor to joint bleeding. Blood 132:1593-1603
Sinha, Ranjeet K; Wang, Yaoming; Zhao, Zhen et al. (2018) PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood 131:1163-1171
Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine et al. (2018) Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice. Thromb Haemost 118:1036-1047
Mosnier, Laurent O (2018) Warfarin, a juggler's demise. Blood 131:2742-2743
Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine et al. (2018) Erratum to: Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice. Thromb Haemost :
Fernández, José A; Xu, Xiao; Sinha, Ranjeet K et al. (2017) Activated protein C light chain provides an extended binding surface for its anticoagulant cofactor, protein S. Blood Adv 1:1423-1426
Griffin, John H; Mosnier, Laurent O; Fernández, José A et al. (2016) 2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis: Thrombotic Stroke: Neuroprotective Therapy by Recombinant-Activated Protein C. Arterioscler Thromb Vasc Biol 36:2143-2151

Showing the most recent 10 out of 40 publications