Approximately one-third of the world's population is latently infected with Mycobacterium tuberculosis (Mtb) with a 10% risk of developing pulmonary tuberculosis (TB) over their lifetime. Global efforts to combat TB are hampered by the emergence of drug-resistant strains of Mtb and variable efficacy of the currently available vaccine, M. bovis BCG (BCG). Thus, the development of an effective vaccine is critical for the elimination of TB as a public health problem. Studies in the past decade have mainly utilized induction of T helper 1 (Th1) responses and production of interferon gamma (IFN?) as readouts for vaccine efficacy against TB. However, despite inducing high levels of IFN-?, MVA85A, the first recombinant TB vaccine tested in human clinical trials, failed to protect against TB disease. These data highlight the importance of exploring new approaches to improve vaccine-induced immunity against TB. During the prior funding period, we demonstrated that T helper type 17 (Th17) cells, which produce the cytokine interleukin-17 (IL-17), are the primary effector cell mediating vaccine-induced protection against Mtb. Although IFN? is dispensable for vaccine-induced immunity against TB, IL-17 production by vaccine-induced Th17 cells is absolutely necessary to confer vaccine-induced protection against TB. Importantly, mucosal vaccination with the Mtb antigen in adjuvant induced potent lung-resident Th17 cells and improved BCG vaccine-induced protection following Mtb challenge. Our mechanistic studies showed that IL-17 induced chemokines, including CXCL-13, to localize CXCR5-expressing T cells near Mtb-infected macrophages, resulting in the formation of lymphoid follicles and activating macrophages to mediate Mtb control. Despite these major advances in understanding the role of Th17 vaccine-induced cells in TB, the accumulation of vaccine-induced Th17 recall responses in the lung is not accelerated enough to provide sterilizing immunity to Mtb infection. However, we show that vaccine-induced Th17 immunity can be harnessed using DC therapy to achieve near sterilizing immunity against Mtb challenge. Thus, in this renewal, in Aim 1, we will first determine if accelerating Th17 cell accumulation by modulating antigen-presenting cell (APC) function will improve Mtb control.
In Aim 2, we will address the functional role of IL-17 in DC therapy in vaccinated mice, and the relationship between a Single Nucleotide Polymorphism (SNP) in the IL-17 promoter and vaccine-induced responses in humans. Finally, in Aim 3, we will identify and incorporate potent Th17- inducing adjuvants into protective mucosal TB vaccines to translate for future use in humans. These objectives will be addressed using novel Mtb T-cell receptor (TCR) transgenic (Tg) mouse models in combination with gene-deficient mice, mouse models of Mtb infection, novel adjuvants and vaccination strategies, and hypothesis testing in humans. The work proposed in this grant will allow us to promote Th17 responses to generate long-lasting vaccine-induced immunity against TB.

Public Health Relevance

Tuberculosis (TB), caused by the organism M. tuberculosis (Mtb) kills ~1.3 million people worldwide every year. The goal of this project is to identify novel ways to improve IL-17 and Th17 vaccine-induced cells to provide sterilizing vaccine-induced immunity against TB. The relevance of this work to public health is that it will significantly impat the design of future vaccine strategies by allowing us to target Th17 responses to improve TB vaccines, and will therefore have the potential to reduce the global incidence of TB.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Caler, Elisabet V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Dunlap, Micah D; Howard, Nicole; Das, Shibali et al. (2018) A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol 11:1727-1742
Howard, Nicole C; Marin, Nancy D; Ahmed, Mushtaq et al. (2018) Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol 3:1099-1108
Monin, Leticia; Mehta, Shail; Elsegeiny, Waleed et al. (2018) Aspergillus fumigatus Preexposure Worsens Pathology and Improves Control of Mycobacterium abscessus Pulmonary Infection in Mice. Infect Immun 86:
Ahmed, Mushtaq; Smith, Douglas M; Hamouda, Tarek et al. (2017) A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 35:4983-4989
Srikanta, Deepa; Hole, Camaron R; Williams, Matthew et al. (2017) RNA Interference Screening Reveals Host CaMK4 as a Regulator of Cryptococcal Uptake and Pathogenesis. Infect Immun 85:
Treerat, P; Prince, O; Cruz-Lagunas, A et al. (2017) Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol 10:1069-1081
Das, Shibali; Khader, Shabaana (2017) Yin and yang of interleukin-17 in host immunity to infection. F1000Res 6:741
Ahmed, Mushtaq; Jiao, Hongmei; Domingo-Gonzalez, Racquel et al. (2017) Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 101:1373-1381
Griffiths, Kristin L; Villarreal, Daniel O; Weiner, David B et al. (2016) A novel multivalent tuberculosis vaccine confers protection in a mouse model of tuberculosis. Hum Vaccin Immunother 12:2649-2653
Gish, Stacey R; Maier, Ezekiel J; Haynes, Brian C et al. (2016) Computational Analysis Reveals a Key Regulator of Cryptococcal Virulence and Determinant of Host Response. MBio 7:e00313-16

Showing the most recent 10 out of 31 publications