The goal of this proposal is to evaluate a novel role for Prdx6 in the activation of NADPH oxidase (NOX2). Our hypothesis is that in response to a stimulus, Prdx6 is phosphorylated and translocates to the plasma membrane where it generates lysophosphatidylcholine (lysoPC) resulting in activation of NOX2. This hypothesis will be tested by 3 (of 5) specific aims.
Specific Aim 1 will evaluate the effect of Prdx6 """"""""knockout"""""""" on agonist-induced activation of NOX2 in alveolar macrophages (AM) and pulmonary microvascular endothelial cells in culture and in the isolated perfused lung. Activation is determined by translocation of cytosolic components to the membrane and generation of reactive oxygen species (ROS).
Specific Aim 2 will evaluate the mechanism for Prdx6-mediated activation of NOX2;we propose that generation of lysoPC by the phospholipase A2 (PLA2) activity of Prdx6 is responsible.
Specific Aim 3 will evaluate the requirement for Prdx6 phosphorylation in its translocation to the plasma membrane and NOX2 activation. We further propose that binding of one of the cytosolic components (p67phox) to Prdx6 inhibits its PLA2 activity and abrogates the NOX2-activation signal.
Specific Aim 4 will study the interaction of Prdx6 with p67phox in intact cells and with recombinant protein in vitro with specific focus on the PLA2 activity of Prdx6 and the kinetics of the protein-protein interaction. Finally, Specific Aim 5 will investigate the effect of a Prdx6 PLA2 inhibitor, MJ33, in preventing oxidative stress with ischemia in the isolated lung and acute lung injury with ischemia-reperfusion in vivo. We postulate that this agent will maintain the protective peroxidase activity of Prdx6 while inhibiting the activation of NOX2. The proposed studies will provide a coordinated effort to investigate this novel role of Prdx6 and will provide the basic insights for development of new methods to inhibit the activation of the NOX2 enzyme complex and ameliorate ROS-mediated lung injury.

Public Health Relevance

This grant application will evaluate the biochemical pathway associated with the production of strong oxidants (ROS) by lung endothelial and inflammatory cells. A novel and non-toxic agent (MJ33) that inhibits the production of ROS by the pathway will be evaluated for its ability to prevent lung injury associated with ischemia and reperfusion.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL105509-01
Application #
8024096
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Harabin, Andrea L
Project Start
2011-02-01
Project End
2016-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
1
Fiscal Year
2011
Total Cost
$514,070
Indirect Cost
Name
University of Pennsylvania
Department
Physiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Krishnaiah, Saikumari Y; Dodia, Chandra; Sorokina, Elena M et al. (2016) Binding sites for interaction of peroxiredoxin 6 with surfactant protein A. Biochim Biophys Acta 1864:419-25
Sorokina, Elena M; Dodia, Chandra; Zhou, Suiping et al. (2016) Mutation of Serine 32 to Threonine in Peroxiredoxin 6 Preserves Its Structure and Enzymatic Function but Abolishes Its Trafficking to Lamellar Bodies. J Biol Chem 291:9268-80
Benipal, Bavneet; Feinstein, Sheldon I; Chatterjee, Shampa et al. (2015) Inhibition of the phospholipase A2 activity of peroxiredoxin 6 prevents lung damage with exposure to hyperoxia. Redox Biol 4:321-7
Rivera-Santiago, Roland F; Harper, Sandra L; Zhou, Suiping et al. (2015) Solution structure of the reduced form of human peroxiredoxin-6 elucidated using zero-length chemical cross-linking and homology modelling. Biochem J 468:87-98
Chatterjee, Shampa; Fujiwara, Keigi; Pérez, Néstor Gustavo et al. (2015) Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses. Am J Physiol Heart Circ Physiol 308:H1451-62
Chatterjee, Shampa; Nieman, Gary F; Christie, Jason D et al. (2014) Shear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation. Am J Physiol Lung Cell Mol Physiol 307:L668-80
Lee, Intae; Dodia, Chandra; Chatterjee, Shampa et al. (2014) Protection against LPS-induced acute lung injury by a mechanism-based inhibitor of NADPH oxidase (type 2). Am J Physiol Lung Cell Mol Physiol 306:L635-44
Chatterjee, Shampa; Nieman, Gary F; Christie, Jason D et al. (2014) Response to letter by Dr. M. S. A. Mohamed (Antagonizing reactive oxygen species during lung perfusion). Am J Physiol Lung Cell Mol Physiol 307:L909
Fisher, Aron B; Forman, Henry Jay (2014) Antioxidants in the intensive care unit. Am J Respir Crit Care Med 189:1007-8
Krishnaiah, Saikumari Y; Dodia, Chandra; Feinstein, Sheldon I et al. (2013) p67(phox) terminates the phospholipase A(2)-derived signal for activation of NADPH oxidase (NOX2). FASEB J 27:2066-73

Showing the most recent 10 out of 16 publications