There exists a substantial amount of literature regarding the cellular and ionic mechanisms responsible for pressure-induced myogenic regulation of cerebral blood flow (CBF) autoregulation. However, our understanding of the mechanisms by which pressure activates myogenic tone in the arterial wall is only poorly understood. We describe in this application an animal model in which one rat strain, the Fawn Hooded rat (FHH) does not auto regulate CBF in the face of an increasing arterial pressure, whereas, years of consomic interbreeding of 9 generation breeding we found that transfer of a region on chromosome 1 of a Brown Norway (BN) rat recovered the myogenic phenotype in the FHH.1BN consomic rat. It became clear that a locus on chromosome 1 contained a gene coding for the trigger of myogenic tone in response to changes in arterial pressure. 3-5 years of selective manipulation of chromosome 1 and phenotyping F1 generations of interbred offspring have narrowed the region of this chromosome to a 1.2 M base pair quantitative trait loci (QTL) containing the gene for adducin3 (Add3) and DUSP-5 along with other incomplete genes. Transfer of this 1.2 M base QTL confers a normal auto regulatory phenotype in the FHH rat. Using siRNA methodology to knockdown Add3 and DUSP-5 we have, in preliminary experiments, significantly reduced auto regulatory capacity by knocking down Add3 and DUSP-5 protein levels. Protocols described in this application are designed to define the cellular signaling cascades responsible for the actions of Add3, DUSP-5 or other yet unidentified genes in this 1.2 M base QTL. Similarly, we will identify the ionic species responsible for pressure-induced membrane depolarization which is necessary for initiation and maintenance of pressure-induced myogenic tone. These rat strains are the congenic animal model allowing identification of the mechanisms responsible for pressure-induced autoregulation in which no compensatory changes in the background genotype can occur, unlike that which can occur in a knockout mouse.

Public Health Relevance

The proposed work using the genetic model of rat described in the grant application will aid us in identifying signaling events and ionic mechanisms that controls the myogenic tone and the autoregulation of cerebral blood flow. This information will help in developing better future treatment options for neurovascular related diseases such as stroke, traumatic brain injury, dementia and Alzheimers in aging population of humans.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL105997-03
Application #
8584314
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Charette, Marc F
Project Start
2011-12-05
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
3
Fiscal Year
2014
Total Cost
$548,305
Indirect Cost
$150,590
Name
Medical College of Wisconsin
Department
Physiology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Zhang, Yue; Hong, Gina; Lee, Kin Sing Stephen et al. (2017) Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation. J Neurochem 140:814-825
Zhang, Hui; Falck, John R; Roman, Richard J et al. (2017) Upregulation of 20-HETE Synthetic Cytochrome P450 Isoforms by Oxygen-Glucose Deprivation in Cortical Neurons. Cell Mol Neurobiol 37:1279-1286
Gebremedhin, Debebe; Zhang, David X; Carver, Koryn A et al. (2016) Expression of CYP 4A ?-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat 124:16-26
Fan, Fan; Geurts, Aron M; Murphy, Sydney R et al. (2015) Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol 308:R379-90
Hye Khan, Md Abdul; Sharma, Amit; Rarick, Kevin R et al. (2015) Elevated Aminopeptidase P Attenuates Cerebral Arterial Responses to Bradykinin in Fawn-Hooded Hypertensive Rats. PLoS One 10:e0145335
Liu, Xiaoguang; Gebremedhin, Debebe; Harder, David R et al. (2015) Contribution of epoxyeicosatrienoic acids to the cerebral blood flow response to hypoxemia. J Appl Physiol (1985) 119:1202-9
Warrington, Junie P; Fan, Fan; Murphy, Sydney R et al. (2014) Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability. Physiol Rep 2:
Fan, Fan; Geurts, Aron M; Pabbidi, Mallikarjuna R et al. (2014) Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One 9:e112878
Pabbidi, Mallikarjuna R; Mazur, Olga; Fan, Fan et al. (2014) Enhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats. Am J Physiol Heart Circ Physiol 306:H989-H1000
Gebremedhin, Debebe; Gopalakrishnan, Sandeep; Harder, David R (2014) Endogenous events modulating myogenic regulation of cerebrovascular function. Curr Vasc Pharmacol 12:810-7

Showing the most recent 10 out of 16 publications