Improving exercise tolerance, one of the major goals of physicians treating patients with cardiovascular disease, can be achieved either by improving cardiac output and blood flow to skeletal muscle, or by improving energy metabolism in skeletal muscle, or both. However, less is known regarding specific molecular pathways that might be approached therapeutically to improve exercise tolerance. In the past, we have demonstrated that the adenylyl cyclase type 5 (AC5) knockout (KO) mouse lives one third longer than wild type and is protected against aging induced cardiomyopathy, and the development of heart failure induced by either chronic catecholamine or pressure overload stress. The current project is based on these studies and our preliminary data demonstrating that AC5 KO mice exhibit increased exercise capacity. Our overall hypothesis is that AC5 is a critical enzyme affecting stress resistance and exercise capacity. The goal of this project is to examine mechanisms involved in AC5 inhibition, which could lead to a novel approach to improve exercise performance. There are two major hypotheses: HYPOTHESIS A: AC5 inhibition permits enhanced exercise performance due to improved limb blood flow through enhanced vasodilator mechanisms or angiogenesis, whereas improved cardiac function and cardiac output are less likely mechanisms. HYPOTHESIS B: AC5 inhibition permits enhanced exercise performance due to improved mitochondrial function and/or resistance to oxidative stress and/or improved glucose utilization. The implications for Public Health are clear: improving exercise tolerance will have broad significance for aging, heart disease, most other diseases and even for the young, healthy population.

Public Health Relevance

Improving exercise tolerance, one of major goals of physicians treating patients with cardiovascular disease, can be achieved either by improving cardiac output and blood flow to skeletal muscle, or energy metabolism in skeletal muscle, or both. However, less is known regarding specific molecular pathways that might be approached therapeutically to improve exercise tolerance. The goal of this project is to examine mechanisms involved in AC5 inhibition, which could lead to a novel approach to improve exercise performance. The implications for Public Health are clear: improving exercise tolerance will have broad significance for aging, heart disease, most other diseases and even for the young, healthy population.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
6R01HL106511-03
Application #
8497469
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Schwartz, Lisa
Project Start
2011-09-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$430,225
Indirect Cost
$159,643
Name
Rutgers University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
07103
Zhang, Jie; Levy, Daniel; Oydanich, Marko et al. (2018) A novel adenylyl cyclase type 5 inhibitor that reduces myocardial infarct size even when administered after coronary artery reperfusion. J Mol Cell Cardiol 121:13-15
Vatner, Dorothy E; Zhang, Jie; Oydanich, Marko et al. (2018) Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell :e12751
Zhao, Zhenghang; Kudej, Raymond K; Wen, Hairuo et al. (2018) Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB J 32:4229-4240
Guers, John J; Gwathmey, Judith; Haddad, Georges et al. (2017) Minority investigators lack NIH funding. Science 356:1018-1019
Guers, John J; Zhang, Jie; Campbell, Sara C et al. (2017) Disruption of adenylyl cyclase type 5 mimics exercise training. Basic Res Cardiol 112:59
Zhang, Jie; Zhao, Xin; Vatner, Dorothy E et al. (2016) Extracellular Matrix Disarray as a Mechanism for Greater Abdominal Versus Thoracic Aortic Stiffness With Aging in Primates. Arterioscler Thromb Vasc Biol 36:700-6
Vatner, Stephen F (2016) Why So Few New Cardiovascular Drugs Translate to the Clinics. Circ Res 119:714-7
Jose Corbalan, J; Vatner, Dorothy E; Vatner, Stephen F (2016) Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 111:31
Bravo, Claudio A; Vatner, Dorothy E; Pachon, Ronald et al. (2016) A Food and Drug Administration-Approved Antiviral Agent that Inhibits Adenylyl Cyclase Type 5 Protects the Ischemic Heart Even When Administered after Reperfusion. J Pharmacol Exp Ther 357:331-6
Vatner, Dorothy E; Yan, Lin; Lai, Lo et al. (2015) Type 5 adenylyl cyclase disruption leads to enhanced exercise performance. Aging Cell 14:1075-84

Showing the most recent 10 out of 55 publications