Despite therapeutic advances, no current treatment fully reverses impaired heart function. Heart failure often develops in individuals with coronary artery disease; high blood pressure or have suffered a myocardial infarction. Heart failure can develop at any age, but increases in prevalence with age. Moreover, individuals of advanced age also develop a syndrome of heart failure with preserved ejection fraction (HFpEF). Experimental models of aging as well as human studies suggest that endogenous repair capabilities become depleted with age. Therefore, novel interventions that preserve cardiac homeostasis are essential to reduce heart failure associated morbidity and mortality. Our novel and potent family of synthetic peptide analogues of Growth Hormone Releasing Hormone (GHRH) receptor agonists (GHRH-As) produce a comprehensive repair program in two models of heart failure associated with ischemic heart disease. Treatment with GHRH-A improved cardiac function and attenuated remodeling in both acute and chronic models of ischemic injury, and improved peripheral vascular function. These effects are mediated by direct activation of GHRH receptor signaling, promoting endogenous cell survival and repair mechanisms. However, the cellular targets and mechanisms involved remain to be elucidated. The long-term goal of this proposal is to identify the mechanisms underlying GHRH- mediated cardiac protection and apply GHRH-targeted therapeutics to prevent HFpEF. We propose a combination of in vivo and ex vivo approaches to test the central hypothesis that activation of GHRHR signaling restores cardiac structure and function in HFpEF by promoting cardiomyocyte proliferation and reducing fibrosis and apoptosis.
The specific aims of this grant are to test the hypotheses that 1) GHRH Receptor signaling regulates cardiomyocyte function; 2) GHRH-A therapy prevents cardiovascular changes and/or restores cardiovascular function in Ang II-induced mouse models of HFpEF; and 3) GHRH-As prevent and/or reverse HFpEF in a porcine model of chronic kidney disease. Together this series of aims will provide novel insights into the mechanisms by which GHRH-As are cardioprotective and to the development of novel and effective therapeutic approaches tailored to improve cardiac performance in patients with HFpEF and other cardiovascular diseases.

Public Health Relevance

Heart failure with preserved ejection fraction (HFpEF) represents a leading cause of death and disability worldwide, yet there are no current therapies that directly treat this challenging clinical syndrome. In this proposal, we will explore the mechanisms through which Growth Hormone Releasing Hormone analogs act to protect the heart from injury. Our findings will have implications for developing new therapeutic strategies for HFpEF and other related cardiovascular diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL107110-08
Application #
9656029
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Schwartz, Lisa
Project Start
2011-01-01
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2020-02-29
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Miami School of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Mayourian, Joshua; Ceholski, Delaine K; Gorski, Przemek A et al. (2018) Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res 122:933-944
Starke, Robert M; Thompson, John W; Ali, Muhammad S et al. (2018) Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis. Arterioscler Thromb Vasc Biol 38:610-621
Bagno, Luiza; Hatzistergos, Konstantinos E; Balkan, Wayne et al. (2018) Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 26:1610-1623
Schulman, Ivonne Hernandez; Khan, Aisha; Hare, Joshua M (2018) Interdisciplinary Stem Cell Institute at the University of Miami Miller School of Medicine. Circ Res 123:1030-1032
Bolli, Roberto; Hare, Joshua (2018) Introduction to a Compendium on Regenerative Cardiology. Circ Res 123:129-131
Arora, Himanshu; Panara, Kush; Kuchakulla, Manish et al. (2018) Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc Natl Acad Sci U S A 115:11298-11303
Gesmundo, Iacopo; Miragoli, Michele; Carullo, Pierluigi et al. (2017) Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure. Proc Natl Acad Sci U S A 114:12033-12038
Tompkins, Bryon A; Natsumeda, Makoto; Balkan, Wayne et al. (2017) What Is the Future of Cell-Based Therapy for Acute Myocardial Infarction. Circ Res 120:252-255
Landin, Ana Marie; Hare, Joshua M (2017) The quest for a successful cell-based therapeutic approach for heart failure. Eur Heart J 38:661-664
Moon, Younghye; Cao, Yenong; Zhu, Jingjing et al. (2017) GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity. Antioxid Redox Signal 26:165-181

Showing the most recent 10 out of 72 publications