Millions of Americans develop chest pain suggestive of coronary artery disease (CAD) each year and often receive non-invasive diagnostic testing such as myocardial perfusion scintigraphy (MPS) or, more recently, coronary computed tomographic angiography (CCTA). Such testing accounts for ~10% of the entire ionizing radiation burden to the U.S. population. The 200-site, 10,000 patient """"""""PROspective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE)"""""""" Trial is testing the hypothesis that an initial 'anatomic'(CCTA) testing strategy is superior in reducing major adverse cardiovascular events to usual care with an initial 'functional'stress testing strategy (using physician-selected stress imaging (MPS or echocardiography) or stress electrocardiography)) in low-intermediate CAD risk patients with chest pain. However, comprehensive comparison of testing strategies requires accurate assessment not just of cardiovascular events, but also weighting these against costs and risks for each strategy. The objective of this ancillary """"""""PROMISE Substudy to Assess For Effective dose of Radiation (PROMISE-SAFER)"""""""" is to compare the radiation burden of initial anatomic vs. functional testing strategies for the evaluation of suspected CAD. Its primary aim is to determine whether cumulative radiation dose to symptomatic patients is decreased with an anatomic imaging strategy as compared to a functional testing strategy. While PROMISE will record basic measures of radiation burden from initial CCTA and MPS exams, the proposed study will develop a more accurate and comprehensive approach that is needed to accurately compare patients'cumulative radiation effective doses between testing strategies. This will include tracking subsequent tests for CAD evaluation and tests to evaluate incidental findings such as pulmonary nodules, and measured or imputed patient-specific dosimetry estimates from each follow-up test, with imputation performed using data from a large dose registry. Moreover, accurate estimation of radiation effective dose in CCTA will require determination of new conversion factors for contemporary CT scanners, to be performed using measurements obtained using solid-state radiation detectors in physical anthropomorphic phantoms. Additional aims are to compare projected cumulative lifetime attributable risk of cancer incidence, as determined using radioepidemiological models developed by the National Academies, between testing strategies, and to characterize the variability of radiation doses of cardiac imaging procedures, identifying patient, strategy, site, and regional factors predictive of high dose and repeated testing.

Public Health Relevance

By analyzing the impact of diagnostic testing strategy on cumulative radiation dose and projected cancer risk in patients with chest pain, PROMISE-SAFER is essential to enable a comprehensive comparison of the benefits, risks, and costs of anatomic and functional testing strategies. It will provide information that has the potential to sizably decrease the cumulative radiation dose received by the U.S. population, and correspondingly its attendant cancer risks. Its results will define care and shape health policy for the millions of symptomatic people referred for stress testing each year, and determine the value of new technologic advances such as coronary computed tomography.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Clinical and Integrative Cardiovascular Sciences Study Section (CICS)
Program Officer
Cooper, Lawton S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Rigsby, Cynthia K; McKenney, Sarah E; Hill, Kevin D et al. (2018) Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently 'Have-A-Heart' campaign. Pediatr Radiol 48:5-20
Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M et al. (2018) Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography. JACC Cardiovasc Imaging 11:64-74
Einstein, Andrew J; Shuryak, Igor; Castaño, Adam et al. (2018) Estimating cancer risk from 99mTc pyrophosphate imaging for transthyretin cardiac amyloidosis. J Nucl Cardiol :
Hill, Kevin D; Frush, Donald P; Han, B Kelly et al. (2017) Radiation Safety in Children With Congenital and Acquired Heart Disease: A Scientific Position Statement on Multimodality Dose Optimization From the Image Gently Alliance. JACC Cardiovasc Imaging 10:797-818
Lu, Michael T; Douglas, Pamela S; Udelson, James E et al. (2017) Safety of coronary CT angiography and functional testing for stable chest pain in the PROMISE trial: A randomized comparison of test complications, incidental findings, and radiation dose. J Cardiovasc Comput Tomogr 11:373-382
Trattner, Sigal; Prinsen, Peter; Wiegert, Jens et al. (2017) Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry. Med Phys 44:6589-6602
Gehi, Anil K; Shuryak, Igor; Balter, Stephen et al. (2017) Estimating Cancer Risk Associated With Ionizing Radiation Exposure During Atrial Fibrillation Ablation. JACC Clin Electrophysiol 3:1200-1201
Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter et al. (2017) Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose. AJR Am J Roentgenol 208:585-594
Hill, Kevin D; Einstein, Andrew J (2016) New approaches to reduce radiation exposure. Trends Cardiovasc Med 26:55-65
Einstein, Andrew J (2015) Radiation Dose Reduction in Coronary CT Angiography: Time to Buckle Down. JACC Cardiovasc Imaging 8:897-9

Showing the most recent 10 out of 22 publications