Physical activity is known to be a modifiable risk factor for various health outcomes and an effective trial could have significant effect on public health. Physical activity is a component of the American Heart Association (AHA) guidelines for ideal cardiovascular health, which advise at least 150 minutes per week of moderate intensity, or 75 minutes of vigorous intensity activity. A physical activity program is a critical component o primary and secondary prevention strategies for cardiovascular disease, and yet it may not be easy to follow these recommendations due to time and space constraints, or concomitant medical comorbities. Within the time duration guidelines, no further specific recommendations are available. Few studies defined physical activity variable detail enough to distinguish differen profiles or patterns of physical activity. Recognizing existing patterns of physical activity and patterns of changes in physical activity can help to design an effective trial. Goals of this proposal are to develop new cluster analysis methods to accommodate special features of physical activity data arising from questionnaire and accelerometry, apply the proposed cluster analysis to physical activity data from the Northern Manhattan Stroke Study (NOMAS) and the Endotoxin, Obesity, and Asthma in NYC Head Start (OEAHS) study, and validate utility of the identified patterns via proposed methods as predictors of cardiovascular outcome and obesity, respectively. Cluster analysis partitions subjects into meaningful subgroups, when the number of subgroups and other information about their composition may be unknown. Existing literature on cluster analysis of physical activity data are based on summary measures such as calorie consumed or duration spent on fixed number of categories of activities. Physical activity data are composed of variable, not fixed, number and type of activities and furthermore the number of activities is random and informative. State-of-the-art existing model-based cluster analysis has limitations to accommodate complexity of physical activity data. We propose several new model-based cluster analyses incorporating special features of physical activity data that existing cluster analysis cannot accommodate. The proposed model will handle (i) variable length of outcomes; (ii) the case when the dimension of outcome is informative; (iii) strictly positive outcomes without transformation; and (iv) repeatedly measured physical activity data. We will also apply the proposed method to accelerometry data. We will test utility of the identified clusters or patterns as predictors of cardiovascular outcomes using NOMAS questionnaire data, and predictors of obesity using OEAHS accelerometry data.

Public Health Relevance

Physical activity is known to be a modifiable risk factor for various health outcomes and is a component of the American Heart Association (AHA) guidelines for ideal cardiovascular health, and yet no details are outlined except for duration and intensity. Recognizing existing patterns of physical activity and patterns of changes in physical activity can help to design an effective trial. Goals of this proposal are to develop new cluster analysis methods to accommodate special features of physical activity data, apply the proposed cluster analysis to leisure time physical activity data from Northern Manhattan Stroke Study (questionnaire) and the Endotoxin, Obesity, and Asthma in NYC Head Start study (accelerometry), and validate utility of the identified patterns via proposed methods as predictors of respective health outcome.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL111195-04
Application #
8839813
Study Section
Kidney, Nutrition, Obesity and Diabetes (KNOD)
Program Officer
Boyington, Josephine
Project Start
2012-08-17
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2017-04-30
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hu, X; Hsueh, P-Y S; Chen, C-H et al. (2018) An interpretable health behavioral intervention policy for mobile device users. IBM J Res Dev 62:
Cheung, Ying Kuen; Moon, Yeseon P; Kulick, Erin R et al. (2017) Leisure-Time Physical Activity and Cardiovascular Mortality in an Elderly Population in Northern Manhattan: A Prospective Cohort Study. J Gen Intern Med 32:168-174
Willey, Joshua Z; Moon, Yeseon P; Sacco, Ralph L et al. (2017) Physical inactivity is a strong risk factor for stroke in the oldest old: Findings from a multi-ethnic population (the Northern Manhattan Study). Int J Stroke 12:197-200
Hu, Xinyu; Hsueh, Pei-Yun S; Chen, Ching-Hua et al. (2017) A First Step Towards Behavioral Coaching for Managing Stress: A Case Study on Optimal Policy Estimation with Multi-stage Threshold Q-learning. AMIA Annu Symp Proc 2017:930-939
Willey, Joshua Z; Voutsinas, Jenna; Sherzai, Ayesha et al. (2017) Trajectories in Leisure-Time Physical Activity and Risk of Stroke in Women in the California Teachers Study. Stroke 48:2346-2352
Willey, Joshua Z; Gardener, Hannah; Caunca, Michelle R et al. (2016) Leisure-time physical activity associates with cognitive decline: The Northern Manhattan Study. Neurology 86:1897-903
Yu, Gary; Goldsamt, Lloyd A; Clatts, Michael C et al. (2016) Sexual Initiation and Complex Recent Polydrug Use Patterns Among Male Sex Workers in Vietnam: A Preliminary Epidemiological Trajectory. Arch Sex Behav 45:975-81
Yu, Gary; Wall, Melanie M; Chiasson, Mary Ann et al. (2015) Complex drug use patterns and associated HIV transmission risk behaviors in an Internet sample of U.S. men who have sex with men. Arch Sex Behav 44:421-8
Willey, Joshua Z; Moon, Yeseon Park; Sherzai, Ayesha et al. (2015) Leisure-time physical activity and mortality in a multiethnic prospective cohort study: the Northern Manhattan Study. Ann Epidemiol 25:475-479.e2
Cheung, Ying Kuen; Yu, Gary; Wall, Melanie M et al. (2015) Patterns of leisure-time physical activity using multivariate finite mixture modeling and cardiovascular risk factors in the Northern Manhattan Study. Ann Epidemiol 25:469-74

Showing the most recent 10 out of 11 publications