The prevalence of asthma and allergic diseases has dramatically increased in the last 40 years. Therefore, it is critical to determine mechanisms for regulation of allergy/asthma in order to identify novel targets for intervention. We recently demonstrated that 5-hydroxytryptophan (5HTP) supplementation inhibits allergic lung inflammation and allergen-induced airway hyperresponsiveness (AHR). Cells metabolize 5HTP to serotonin but many reports indicate that 5HTP and serotonin administration have opposite outcomes on physiological responses. Reduced synthesis of 5HTP is associated with anxiety/depression. Interestingly, there are many clinical reports indicating an association of anxiety/depression with allergy/asthma, but the mechanism for this association is not known. It is also reported that anxiety is increased in rodents challenged with allergen, suggesting a potential coordinated regulation. We propose a novel concept that leukocyte recruitment and anxiety/depression during allergy/asthma are coordinately reduced by 5HTP supplementation. 5HTP is metabolized to serotonin and then serotonin binds inhibitory or stimulatory serotonin receptors (HTRs) or serotonin is covalently linked to proteins (serotonylation). Consistent with our novel concept, we reported that 5HTP reduced allergic inflammation, decreased allergen-induced serotonylation in endothelial cells and reduced allergen-induced AHR. In vitro, 5HTP-pretreatment of endothelial cells blocked leukocyte transendothelial migration and blocked cytokine-stimulated endothelial cell serotonylation, suggesting a negative feedback regulation by 5HTP. Our long-term goal is to identify mechanisms for 5HTP regulation of leukocyte recruitment in allergy/asthma and thus identify potential targets for intervention in allergic inflammation and the associated anxiety/depression symptoms. As a step towards our long-term goal, our central hypothesis is that the readily available amino acid supplement 5HTP (from the plant Griffonia Simplifolia) limits leukocyte recruitment through 5HTP inhibition of endothelial cell signals and consequently eosinophil-dependent AHR and allergen-induced anxiety. We will test our central hypothesis with the following specific aims:
Aim 1. Test the hypothesis that HTRs on endothelial cells and/or leukocytes mediate 5HTP inhibition of leukocyte transendothelial migration in vitro.
Aim 2. Test the hypothesis that 5HTP inhibits VCAM-1 intracellular signals in endothelial cells during VCAM-1-dependent leukocyte transendothelial migration in vitro.
Aim 3. Test the hypothesis that 5HTP inhibits leukocyte recruitment, AHR and the associated antigen-induced elevation of anxiety through 5HTP regulation of HTRs or serotonylation. It is anticipated that the aims will identify mechanisms for 5HTP inhibition of allergic inflammation, allergen-induced AHR and anxiety. Such results are expected to have an important positive impact, because it is likely that new targets for intervention will be determined in addition to advancing the mechanistic understanding of 5HTP regulation of inflammation.

Public Health Relevance

The prevalence of asthma and allergic diseases has dramatically increased in the last 40 years and we recently demonstrated that the readily available amino acid supplement 5-hydroxytryptophan (5HTP) significantly inhibits allergic lung inflammation and allergen-induced airway hyperresponsiveness (AHR). In this project, we will identify mechanisms for 5HTP regulation of leukocyte recruitment in allergy/asthma and thus identify potential targets for intervention in allergic inflammation and the anxiety/depression symptoms associated with allergy/asthma. Such results are expected to have an important positive impact, because it is likely that new targets for intervention will be determined in addition to advancing the mechanistic understanding of 5HTP regulation of inflammation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL111624-01A1
Application #
8577431
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Noel, Patricia
Project Start
2013-08-01
Project End
2017-06-30
Budget Start
2013-08-01
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$367,710
Indirect Cost
$129,710
Name
Northwestern University at Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Walker, Matthew T; Green, Jeremy E; Ferrie, Ryan P et al. (2018) Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol 141:1711-1725.e9
Abdala-Valencia, Hiam; Kountz, Timothy S; Marchese, Michelle E et al. (2018) VCAM-1 induces signals that stimulate ZO-1 serine phosphorylation and reduces ZO-1 localization at lung endothelial cell junctions. J Leukoc Biol 104:215-228
Cook-Mills, Joan; Gebretsadik, Tebeb; Abdala-Valencia, Hiam et al. (2016) Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax 71:954-6
Abdala-Valencia, Hiam; Soveg, Frank; Cook-Mills, Joan M (2016) ?-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 310:L759-71
Soveg, Frank; Abdala-Valencia, Hiam; Campbell, Jackson et al. (2015) Regulation of allergic lung inflammation by endothelial cell transglutaminase 2. Am J Physiol Lung Cell Mol Physiol 309:L573-83
Cook-Mills, Joan M (2015) Maternal influences over offspring allergic responses. Curr Allergy Asthma Rep 15:501
Abdala-Valencia, Hiam; Bryce, Paul J; Schleimer, Robert P et al. (2015) Tetraspanin CD151 Is a Negative Regulator of Fc?RI-Mediated Mast Cell Activation. J Immunol 195:1377-87
Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Soveg, Frank W et al. (2014) ?-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 307:L482-96
Marchese, Michelle E; Kumar, Rajesh; Colangelo, Laura A et al. (2014) The vitamin E isoforms ?-tocopherol and ?-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res 15:31
Cook-Mills, Joan M; Avila, Pedro C (2014) Vitamin E and D regulation of allergic asthma immunopathogenesis. Int Immunopharmacol 23:364-72

Showing the most recent 10 out of 14 publications