Vascular calcification is a frequent complication of vascular disease associated with increased morbidity and mortality. It is recognized to be an active process involving osteochondrogenic differentiation in multipotent cells. Previous reports have suggested that endothelial cells (ECs) contribute calcifying cells in congenital disorders with soft tissue calcification, triggered by abnormal bone morphogenetic protein (BMP) signaling. Matrix Gla protein (MGP) is an inhibitor of vascular calcification, and an antagonist to BMP2/4. MGP null mice show strong activation of vascular BMP signaling and extensive aortic calcification. Ins2-Akita/+ mice, a model of type 1 diabetes, exhibit similar findings due to induction of BMPs and BMP receptors. Preliminary data show that BMP activation causes stem cell characteristics to emerge in normal ECs. Indeed, EC lineage markers co- stain with osteogenic and pluripotent stem cell markers in MGP null aortas, and MGP-depletion in human aortic ECs in vitro causes the cells to undergo osteogenic differentiation in response to osteoinductive factors. In addition, Ins2-Akita/+ mice exhibit increased aortic expression of multiple pluripotency-associated markers. Thus, normal ECs may contribute osteoprogenitor cells to vascular calcification when subjected to increased BMP activity. The scientific purpose of this proposal is to define the role of the endothelium in vascular calcification in MGP deficiency and diabetes. We hypothesize that normal endothelium contributes multipotent cells to vascular calcification due to the capacity of abnormal BMP activity to induce stem cell characteristics and subsequent osteogenesis.
Specific Aim 1 will define multipotency and osteochondrogenic potential in ECs in the setting of MGP deficiency or hyperglycemia in vitro and in vivo.
Specific Aim 2 will determine if ECs contribute cells to calcific lesions using lineag tracing in two models of vascular calcification, the MGP-/- mouse and the diabetic Ins2Akita/+ mouse. For lineage tracing, the currently available Tie2-GFP or Tie2- Cre;R262R-eGFP transgenic mice will be used.
Specific Aim 3 will determine the relative contributions of EC- and SMC-specific loss of MGP in the development of vascular calcification using EC- and SMC-specific MGP knockout mice. If successful, the endothelium may emerge an important target to treat calcification in acquired vascular disease.

Public Health Relevance

Our studies are relevant to the treatment of disease of the heart and vessels, including hardening of the arteries and disease of vessels in diabetic patients. This study focuses on factors referred to as bone morphogenetic proteins, and how they can alter the vessel lining as to promote the hardening of the vessels. Understanding how these factors work may lead to new strategies for prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL112839-03
Application #
8791127
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Reid, Diane M
Project Start
2013-02-01
Project End
2017-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
3
Fiscal Year
2015
Total Cost
$379,225
Indirect Cost
$132,975
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Boström, Kristina I; Yao, Jiayi; Wu, Xiuju et al. (2018) Endothelial Cells May Have Tissue-Specific Origins. J Cell Biol Histol 1:
Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan et al. (2018) Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 233:1812-1822
Yao, Jiayi; Guihard, Pierre J; Wu, Xiuju et al. (2017) Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 216:3369-3385
Guihard, Pierre J; Yao, Jiayi; Blazquez-Medela, Ana M et al. (2016) Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS One 11:e0167936
Boström, Kristina I; Yao, Jiayi; Guihard, Pierre J et al. (2016) Endothelial-mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis 253:124-127
Boström, Kristina I (2016) Where do we stand on vascular calcification? Vascul Pharmacol 84:8-14
Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M et al. (2016) Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 19:1-7
Jumabay, Medet; Moon, Jeremiah H; Yeerna, Huwate et al. (2015) Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol 230:2821-8
Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M et al. (2015) Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification. Circ Res 117:758-69
Boström, Kristina I; Guihard, Pierre; Blazquez Medela, Ana M et al. (2015) Matrix Gla protein limits pulmonary arteriovenous malformations in ALK1 deficiency. Eur Respir J 45:849-52

Showing the most recent 10 out of 16 publications