The successful derivation of human induced pluripotent stem cells (hiPSCs) from somatic cells offers significant potential to overcome obstacles in the field of cardiovascular disease. hiPSC-derived cardiac cells can now provide incredible potential for disease modeling in vitro and regenerative medicine therapies in vivo. Recently, several exciting demonstrations of the disease modeling capability of hiPSC- derived cardiac cells have been published (e.g., Timothy syndrome, LEOPARD syndrome). These patient-specific hiPSC-CMs have been found to recapitulate the disease phenotypes. In contrast to Timothy and LEOPARD syndrome (which are considered orphan diseases), familial dilated cardiomyopathy (DCM) is the most common cause of heart failure and hence places a tremendous burden on the healthcare system in the US and worldwide. Here we seek to derive hiPSCs from patients with familial dilated cardiomyopathy (Aim 1), determine the phenotype of hiPSC-cardiac cells from DCM patients versus healthy controls (Aim 2), and evaluate their functionality after genetic rescue using homologous recombination (Aim 3). We believe the findings here should have broad clinical and scientific impact toward better understanding on the molecular and cellular basis of DCM.

Public Health Relevance

Familial dilated cardiomyopathy (DCM) is the most common cause of heart failure and places a tremendous burden on the healthcare system in the US and worldwide. From the early beginnings of the genomic era and since the description of the first familial DCM causing mutations, investigators have attempted to study its mechanistic basis by correlating genotype with clinical phenotype expression. Unfortunately, these studies have been severely hampered by the inaccessibility of human cardiomyocytes. In this grant proposal, we will generate human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with DCM. We will perform detailed and mechanistic analyses to determine the functional and molecular phenotypes of DCM. This approach will dramatically enhance our ability to perform future high-throughput drug screening, evaluate gene and cell therapies, and assess potential novel therapies of DCM.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL113006-01
Application #
8272056
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Buxton, Denis B
Project Start
2012-05-01
Project End
2017-02-28
Budget Start
2012-05-01
Budget End
2013-02-28
Support Year
1
Fiscal Year
2012
Total Cost
$392,944
Indirect Cost
$142,944
Name
Stanford University
Department
Surgery
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Abilez, Oscar J; Tzatzalos, Evangeline; Yang, Huaxiao et al. (2018) Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 36:265-277
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Ma, Ning; Zhang, Joe Z; Itzhaki, Ilanit et al. (2018) Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Circulation 138:2666-2681
Nishiga, Masataka; Guo, Hongchao; Wu, Joseph C (2018) Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. Eur Heart J 39:1848-1850
Garg, Priyanka; Oikonomopoulos, Angelos; Chen, Haodong et al. (2018) Genome Editing of Induced Pluripotent Stem Cells to Decipher Cardiac Channelopathy Variant. J Am Coll Cardiol 72:62-75
Rhee, June-Wha; Wu, Joseph C (2018) Cardiac Cell Cycle Activation as a Strategy to Improve iPSC-Derived Cardiomyocyte Therapy. Circ Res 122:14-16
Garg, Priyanka; Garg, Vivek; Shrestha, Rajani et al. (2018) Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 123:224-243
Lee, Andrew S; Inayathullah, Mohammed; Lijkwan, Maarten A et al. (2018) Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat Biomed Eng 2:104-113
Zhao, Xin; Chen, Haodong; Xiao, Dan et al. (2018) Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction. Stem Cell Reports 10:422-435
Oikonomopoulos, Angelos; Kitani, Tomoya; Wu, Joseph C (2018) Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Mol Ther 26:1624-1634

Showing the most recent 10 out of 73 publications