Immune regulation is critical in health and disease. Nowhere is this clearer than following allogeneic hematopoietic cell transplantation where dysregulated immune responses result in graft-versus-host disease (GVHD) and effective immune recognition results in control of the underlying disease, termed graft-versus- tumor effects. In this proposal, we will study the key regulators of immune reactions, namely CD4+CD25+CD127loFoxP3+ regulatory T cells (Treg) which have been demonstrated to have profound effects on control of GVHD in murine models, yet allow for GVT responses. Due to the suppression of the deleterious alloimmune effects which can also impact immune tissues, the use of Treg at defined doses along with conventional CD4 and CD8 cells (Tcon) has also resulted in more effective immune recovery. Further, it has been suggested by a number of studies that Treg can also be used to treat chronic GVHD. Therefore, the aims of this proposal are to directly translate the biological concepts developed in preclinical animal studies to test te hypothesis that the adoptive transfer of highly purified Treg will result in control of GVHD, yet promote accelerated immune reconstitution, as well as treat chronic GVHD. The Proposal involves two clinical trials both utilizing highly purified populations of Treg isolated by high-sped cell sorting through IRB and IND approved clinical protocols. The studies will directly translate important biological concepts from the laboratory to the clinic. If successful the studies could have a major impact on the field of allogeneic hematopoietic cell transplantation and could also set the stage for new treatments of autoimmune disorders and induction of solid organ transplantation tolerance.

Public Health Relevance

Regulated immune responses play a major role in a number of different disease states. It has been recognized in laboratory studies that populations of T cells have the ability to regulate these immune responses (termed regulatory T cells) and can profoundly impact these disease entities. This proposal aims to directly translate these concepts from the laboratory to the clinic by using highly purified regulatory T cells to treat patients in he setting of bone marrow transplantation. We have chosen this clinical setting since we believe it is the most direct way to demonstrate that the regulatory cells can improve transplantation which is an important treatment modality for patients with hematologic malignancies and certain genetic disorders. If successful, these studies could improve bone marrow transplantation and open the door to more general use of regulatory T cell populations for the treatment of a variety of diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL114591-02
Application #
8534275
Study Section
Special Emphasis Panel (ZRG1-VH-F (55))
Program Officer
Thomas, John
Project Start
2012-09-01
Project End
2017-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
2
Fiscal Year
2013
Total Cost
$496,978
Indirect Cost
$177,724
Name
Stanford University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Pierini, Antonio; Alvarez, Maite; Negrin, Robert S (2016) NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment. Stem Cells Int 2016:9025835
Pierini, Antonio; Strober, William; Moffett, Caitlin et al. (2016) TNF-? priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood 128:866-71
Florek, Mareike; Schneidawind, Dominik; Pierini, Antonio et al. (2015) Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease. PLoS One 10:e0145763
Pierini, Antonio; Schneidawind, Dominik; Nishikii, Hidekazu et al. (2015) Regulatory T Cell Immunotherapy in Immune-Mediated Diseases. Curr Stem Cell Rep 1:177-186
Pierini, Antonio; Colonna, Lucrezia; Alvarez, Maite et al. (2015) Donor Requirements for Regulatory T Cell Suppression of Murine Graft-versus-Host Disease. J Immunol 195:347-55
Johnston, L; Florek, M; Armstrong, R et al. (2012) Sirolimus and mycophenolate mofetil as GVHD prophylaxis in myeloablative, matched-related donor hematopoietic cell transplantation. Bone Marrow Transplant 47:581-8
Colonna, Lucrezia; Sega, Emanuela I; Negrin, Robert S (2011) Natural and expanded CD4(+)CD25(+) regulatory T cells in bone marrow transplantation. Biol Blood Marrow Transplant 17:S58-62
Negrin, Robert S (2011) Role of regulatory T cell populations in controlling graft vs host disease. Best Pract Res Clin Haematol 24:453-7