Telomere length (TL) in leukocytes, which reflects TL in hematopoietic stem cells (HSCs), is a complex genetic trait that is modified by environmental factors such as smoking and sedentary lifestyle. Based on studies performed in whites, leukocyte TL (LTL) has been found to be relatively short in patients with atherosclerosis and relatively long in patients with left ventricular hypertrophy (LVH). Genome-wide association studies (GWAS) of LTL, performed in cohorts comprising mainly whites, have deciphered LTL-regulating genes that provide mechanistic insights into the potential roles of LTL dynamics (birth LTL and its age-dependent shortening thereafter), and by inference HSC-TL dynamics, in cardiovascular disease (CVD). However, little is known about the LTL-CVD connection and LTL-regulating genes in African Americans (AfAs). Recent studies have established that AfAs have a longer LTL than whites. AfAs also display less atherosclerosis but more LVH than whites. In theory, the differences between AfAs and whites in the predilection to atherosclerosis and LVH might relate at least in part to racial differences in HSC-TL dynamics and variant genes that determine HSC-TL at birth and afterward. Accordingly, leveraging the wealth of DNA specimens, clinical and genotypic data in the Jackson Heart Study (JHS), the main goals of this project are to a) gain a better insight into the relation of LTL to CVD phenotypes in AfAs, b) extend GWAS of LTL to identify LTL-associated genes in AfAs, and c) explore the roles of these newly identified AfA LTL-associated genes and previously deciphered genes (in whites) in clinical and subclinical CVD manifestation in AfAs. In addition, the project will validate a newly developed method to measure telomere DNA content by dot-blot analysis against the Southern blot method. Although the Southern blot method is the most reliable and accurate way to measure TL, its complexity, cost and requirement for large quantities of DNA preclude its use in clinical settings. A validated dot-blot method to measure TL will move the field of human telomere biology forward and facilitate the translation of its findings into clinical practice. Elucidating the LTL-CVD links in AfAs will provide mechanistic insight into pathways that promote atherosclerosis and LVH, as well as provide new diagnostic tools to identify susceptibility to CVD before its overt manifestations.

Public Health Relevance

This project will measure leukocyte telomere length in approximately 3,400 African Americans from the Jackson Heart Study (JHS). We will investigate the relationship between leukocyte telomere length and various measures of subclinical cardiovascular disease in JHS. Using available genome-wide genotype data, we will also discover and validate new and previously identified telomere length-regulating genes. Finally, telomere length-regulating genes will be further tested for association with clinical and subclinical cardiovascular phenotypes in a much larger data set of African Americans available through dbGaP and various GWAS consortia and collaborative networks.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
4R01HL116446-04
Application #
9065731
Study Section
Cardiovascular and Sleep Epidemiology Study Section (CASE)
Program Officer
Pandey, Mona
Project Start
2013-08-01
Project End
2017-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Levine, Morgan E; Lu, Ake T; Quach, Austin et al. (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10:573-591
Benetos, Athanase; Kark, Jeremy D; Toupance, Simon et al. (2018) Response by Benetos et al to Letter Regarding Article, ""Short Leukocyte Telomere Length Precedes Clinical Expression of Atherosclerosis: The Blood-and-Muscle Model"". Circ Res 122:e73-e74
Sabharwal, Sanjeev; Verhulst, Simon; Guirguis, George et al. (2018) Telomere length dynamics in early life: the blood-and-muscle model. FASEB J 32:529-534
Aviv, Abraham (2018) The mitochondrial genome, paternal age and telomere length in humans. Philos Trans R Soc Lond B Biol Sci 373:
Mwasongwe, Stanford; Min, Yuan-I; Booth 3rd, John N et al. (2018) Masked hypertension and kidney function decline: the Jackson Heart Study. J Hypertens 36:1524-1532
Mwasongwe, Stanford E; Young, Bessie; Bidulescu, Aurelian et al. (2018) Relation of multi-marker panel to incident chronic kidney disease and rapid kidney function decline in African Americans: the Jackson Heart Study. BMC Nephrol 19:239
Aviv, Abraham; Anderson, James J; Shay, Jerry W (2017) Mutations, Cancer and the Telomere Length Paradox. Trends Cancer 3:253-258
Toupance, Simon; Labat, Carlos; Temmar, Mohamed et al. (2017) Short Telomeres, but Not Telomere Attrition Rates, Are Associated With Carotid Atherosclerosis. Hypertension 70:420-425
Benetos, Athanase; Aviv, Abraham (2017) Ancestry, Telomere Length, and Atherosclerosis Risk. Circ Cardiovasc Genet 10:
Khan, Sadiya S; Shah, Sanjiv J; Klyachko, Ekaterina et al. (2017) A null mutation in SERPINE1 protects against biological aging in humans. Sci Adv 3:eaao1617

Showing the most recent 10 out of 20 publications