Inflammatory responses in the microcirculation contribute to a number of important clinical entities, including shock, reperfusion injury, wound healing, burns and sickle cell disease, among many others. Much of the existing knowledge of these responses relates to how leukocytes interact with microvascular endothelium, including their adhesion and transendothelial migration. Platelets can also adhere to and extravasate across inflamed microvessels; our recent findings in a well-characterized model of corneal wound injury support a significant functional role for extravascular platelets in inflammation. Further, platelets can release microparticles, which are increasingly recognized to contribute to a number of important clinical conditions. The mechanisms by which platelets extravasate, and the role of platelet- derived microparticles in inflammation remain to be clarified. The central hypothesis of our application is that platelets are necessary for efficient inflammatory responses, via their extravasation across inflamed post-capillary venules and release of microparticles. This collaborative application will address two specific aims: 1) Determine the molecular mechanisms and kinetics of platelet extravasation in microvascular inflammation, and 2) Define the role of microparticles derived from platelets in the inflammatory responses to wound healing. Completion of the proposed work will fill significant gaps in current knowledge of the role of platelets and their microparticles in the inflamed microcirculation. These cellular interactions ar relevant for a number of serious clinical conditions such as shock, burns, and reperfusion injury. Defining the mechanisms involved is expected to help identify new treatment strategies for patients with these and other inflammatory conditions.

Public Health Relevance

Platelets are blood cells involved not only in clotting, but also in inflammation, the body's response to harmful stimuli. Interactions of platelets with tiny blood vessels (microcirculation) in inflammation are important for a number of significant human conditions, including wound healing, infections and shock. The proposed work will help expand our understanding of these interactions, with the goal of developing new treatments for patients with these conditions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
4R01HL116524-04
Application #
9000170
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Kindzelski, Andrei L
Project Start
2013-02-01
Project End
2018-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
4
Fiscal Year
2016
Total Cost
$355,023
Indirect Cost
$70,214
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Cardenas, Eduardo I; Breaux, Keegan; Da, Qi et al. (2018) Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 103:1235-1244
Lam, Fong W; Da, Qi; Guillory, Bobby et al. (2018) Recombinant Human Vimentin Binds to P-Selectin and Blocks Neutrophil Capture and Rolling on Platelets and Endothelium. J Immunol 200:1718-1726
Da, Qi; Derry, Paul J; Lam, Fong W et al. (2018) Fluorescent labeling of endogenous platelets for intravital microscopy: Effects on platelet function. Microcirculation :e12457
Zhang, Wanyu; Magadi, Sri; Li, Zhijie et al. (2017) IL-20 promotes epithelial healing of the injured mouse cornea. Exp Eye Res 154:22-29
Dasgupta, Swapan K; Le, Anhquyen; Da, Qi et al. (2016) Wdr1-Dependent Actin Reorganization in Platelet Activation. PLoS One 11:e0162897
Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila et al. (2016) FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 126:1885-96
Lam, Fong W; Cruz, Miguel A; Parikh, Kathan et al. (2016) Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica 101:e277-9
Lam, Fong W; Phillips, Jenny; Landry, Paul et al. (2015) Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse. PLoS One 10:e0118950
Hanlon, Samuel D; Behzad, Ali R; Sakai, Lynn Y et al. (2015) Corneal stroma microfibrils. Exp Eye Res 132:198-207
Lam, Fong W; Vijayan, K Vinod; Rumbaut, Rolando E (2015) Platelets and Their Interactions with Other Immune Cells. Compr Physiol 5:1265-80

Showing the most recent 10 out of 13 publications