Critical to the development of atherosclerotic lesions is the interaction between blood and vascular cells with components of the extracellular matrix (ECM). This proposal focuses on the role of an ECM protein, thrombospondin-4 (TSP-4). Our published studies and preliminary data strongly implicate TSP-4 in regulation of inflammation in the vessel wall, and, as a consequence, atherosclerosis is markedly suppressed in the TSP- 4 KO mouse. Mechanistically reduced expression of multiple leukocyte adhesion molecules and monocyte chemotactic protein (MCP-1) by endothelial cells (EC) in TSP-4 KO mice leads to few macrophages (M) accumulating into developing lesions, thereby suppressing a key event in atherogenesis. Furthermore, another EC response important in atherogenesis, angiogenesis, is suppressed in TSP-4 KO mice, the first evidence that TSP-4 is a pro-angiogeneic. Superimposed on these novel observations is our finding (now replicated in numerous independent studies) that a high frequency genetic variant, P387 TSP-4 as contrasted to A387, is an atherothrombotic risk factor. The primary hypothesis to be tested is that TSP-4 activates specific molecular mechanisms and pathways in vascular cells that regulate cell-matrix dynamics and vascular inflammation and that the P387 variant accentuates these pro-atherogenetic responses, including angiogenesis. A new knock-in mouse expressing P387 TSP-4 variant will permit testing this hypothesis in vivo.
Three specific aims are proposed: 1) To define the role of the TSP-4 variants in atherosclerosis using TSP-4 KO and P387 TSP-4 K-In mice and to perform bone marrow transplantation in combination with in situ hybridization to determine if differences in atherosclerosis are dependent on blood and/or vascular cells. 2) To identify the molecular mechanisms underlying the differential responses of EC to the TSP-4 variants and characterize the proangiogenic activity of TSP-4 in vivo using TSP-4 KO and P387 TSP-4 K-In mice. 3). To perform translational studies to determine relationships between TSP-4, atherogenesis and angiogenesis in lesioned and non-lesioned areas of human coronary arteries. We found a new plasma biomarker, TSP-4RA, that was markedly elevated in a small panel of AMI patients. This lead will be followed to determine if TSP-4RA is selectively elevated in AMI patients, is prognostic for second AMI, and, at levels attained in patients, influences cellular responses. Our overall goals are to establish the roles of TSP-4 in vascular cell biology, to identify the molecular mechanisms underlying its proatherogenic and proangiogenic functions, and to determine whether these functions are enhanced by the P387 TSP-4 variant in mouse and human studies.

Public Health Relevance

Atherothrombosis is the leading cause of death in the US. Our studies will provide insights into how a specific molecule, thrombospondin-4, and its genetic variant, which is known to contribute to atherosclerosis, exert pathogenic effects making use of unique mouse models and human biological samples. A new biomarker that predicts heart attacks may also be developed from the proposed studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL117216-03
Application #
8786098
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Olive, Michelle
Project Start
2013-01-15
Project End
2017-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
3
Fiscal Year
2015
Total Cost
$353,250
Indirect Cost
$128,250
Name
Cleveland Clinic Lerner
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Stenina-Adognravi, Olga; Plow, Edward F (2017) Thrombospondin-4 in tissue remodeling. Matrix Biol :
Plow, Edward F (2017) An enlightening year in vascular biology. Curr Opin Hematol 24:222-223
Muppala, S; Xiao, R; Krukovets, I et al. (2017) Thrombospondin-4 mediates TGF-?-induced angiogenesis. Oncogene 36:5189-5198
Plow, Edward F (2016) The why's and wherefore's of this vascular biology section of Current Opinion in Hematology. Curr Opin Hematol 23:233-4
Muppala, Santoshi; Frolova, Ella; Xiao, Roy et al. (2015) Proangiogenic Properties of Thrombospondin-4. Arterioscler Thromb Vasc Biol 35:1975-86
Duncan, Andra E; Kateby Kashy, Babak; Sarwar, Sheryar et al. (2015) Hyperinsulinemic Normoglycemia Does Not Meaningfully Improve Myocardial Performance during Cardiac Surgery: A Randomized Trial. Anesthesiology 123:272-87
Krukovets, Irene; Legerski, Matthew; Sul, Pavel et al. (2015) Inhibition of hyperglycemia-induced angiogenesis and breast cancer tumor growth by systemic injection of microRNA-467 antagonist. FASEB J 29:3726-36
Stenina-Adognravi, Olga (2014) Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 37:69-82
Frolova, Ella G; Drazba, Judith; Krukovets, Irene et al. (2014) Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol 37:35-48
Stenina-Adognravi, Olga (2013) Thrombospondins: old players, new games. Curr Opin Lipidol 24:401-9