Effects of glucagon-like peptide-1 (GLP-1) on the heart have been recently recognized, but little is known regarding the cardiovascular physiology of this incretin hormone. GLP-1 can drive myocardial glucose uptake, and has beneficial effects on cardiac function and protection against myocardial ischemic injury in animal models. These effects have been reported for intact GLP-1, acting via the classical GLP-1 receptor, and the degradation product GLP-1 (9-36), which appears to act independent of the GLP-1 receptor. In studies of the effects of obesity and diabetes on myocardial GLP-1 responses, we have produced the first evidence for impaired myocardial GLP-1 responses in the setting of the obese-metabolic syndrome (MetS) in swine and type 2 diabetes mellitus in humans. Based on our preliminary findings we propose to examine the central hypothesis that obesity/MetS attenuates the cardio-metabolic effects of GLP-1 via alterations in parameters of GLP-1 signaling and/or fuel transport regulation. To accomplish our goal, we will examine the following set of Specific Aims:
Aim 1 will determine the myocardial effects of GLP-1 in vivo in lean and obese/MetS Ossabaw swine that possess key clinical features of this syndrome, including obesity, insulin resistance/impaired glucose tolerance, dyslipidemia, and hypertension. These studies involve triple tracer PET approaches to measure basal and GLP-1 stimulated myocardial perfusion, total oxidation rate, and substrate utilization rates as well as quantificatin of the effects of GLP-1 on cardiac function, coronary blood flow and substrate metabolism during exercise-induced increases in myocardial metabolism in conscious, instrumented swine.
Aim 2 will dissect molecular mechanisms of the impaired myocardial GLP-1 responses in obesity/MetS. We propose to quantify coronary and myocardial GLP-1 receptor expression and assess the effects of GLP-1 and GLP-1(9-36) on the activity of key GLP-1 signaling effectors (e.g. cAMP, PKA, p38 MAPK) and the regulation of myocardial glucose and fatty acid transporters (e.g. GLUT4, FAT/CD36) in lean vs. obese/MetS swine.
Aim 3 will examine the cardioprotective effects of GLP-1 in obese/MetS heart following ischemia/reperfusion injury. We propose to quantify the effects of GLP-1 and GLP-1(9-36) on myocardial perfusion, substrate and oxidative metabolism, contractile function and infarct size. Effects of GLP-1 on key signal transduction, markers of myocellular injury, and activation of post-conditioning protective pathways and myocardial injury responses in ischemic and non-ischemic myocardium will also be determined. Data from these integrative/translational studies will provide novel mechanistic insight into the cardiovascular actions of GLP-1 that will significantly advance our understanding of the cardioprotective actions of this incretin hormone. Further, these studies will accelerate discovery of new therapeutic targets or strategies that could substantially improve the cardioprotective efficacy of GLP-1 based therapies in patients with obesity-related cardiovascular disease.

Public Health Relevance

Effects of glucagon-like peptide-1 (GLP-1) on the heart have been recently recognized, but little is known regarding the cardiovascular physiology of this incretin hormone in the setting of obesity and the metabolic syndrome. Data from these integrative/translational studies will provide novel mechanistic insight into the cardiovascular actions of GLP-1 that will accelerate discovery of new therapeutic targets or strategies that could substantially improve the cardioprotective efficacy of GLP-1 based therapies in patients with obesity- related cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL117620-03
Application #
8794339
Study Section
Special Emphasis Panel (ZRG1-CVRS-F (02))
Program Officer
Shah, Monica R
Project Start
2013-02-01
Project End
2018-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
3
Fiscal Year
2015
Total Cost
$662,933
Indirect Cost
$237,022
Name
Indiana University-Purdue University at Indianapolis
Department
Physiology
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Mather, Kieren J; Considine, Robert V; Hamilton, LaTonya et al. (2018) Combination GLP-1 and Insulin Treatment Fails to Alter Myocardial Fuel Selection vs. Insulin Alone in Type 2 Diabetes. J Clin Endocrinol Metab 103:3456-3465
Tune, Johnathan D; Goodwill, Adam G; Sassoon, Daniel J et al. (2017) Cardiovascular consequences of metabolic syndrome. Transl Res 183:57-70
Sassoon, Daniel J; Tune, Johnathan D; Mather, Kieren J et al. (2017) Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction. Diabetes 66:2230-2240
Goodwill, Adam G (2016) Perivascular adipose tissue and inflammation. Obesity (Silver Spring) 24:547
Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N et al. (2016) Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Res Cardiol 111:43
Mather, K J; Hutchins, G D; Perry, K et al. (2016) Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am J Physiol Endocrinol Metab 310:E452-60
Goodwill, Adam G; Fu, Lijuan; Noblet, Jillian N et al. (2016) KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 310:H693-704
Goodwill, Adam G; Noblet, Jillian N; Sassoon, Daniel et al. (2016) Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol 111:56
Noblet, Jillian N; Goodwill, Adam G; Sassoon, Daniel J et al. (2016) Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Res Cardiol 111:25
Mather, Kieren J; DeGrado, Timothy R (2016) Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta 1861:1535-43

Showing the most recent 10 out of 17 publications