Substrate metabolism is essential for the normal biology and physiology of the heart. The soaring incidence of obesity and diabetes has renewed and substantiated interest on cardiac metabolism, in particular, the glucose and lipids metabolism, in the ischemic and failing hearts. A large number of studies have focused on the shift of substrate preference between glucose and fatty acids in the development of heart diseases. However, metabolism of other classes of substrates in the heart, such as amino acids, has rarely been studied. Recently, emerging evidence suggests that the metabolism of branched-chain amino acids is significantly altered during the development of cardiovascular and metabolic diseases. Application of metabolomics technology has shown that blood levels of branched-chain amino acids (BCAA) and related metabolites are strongly associated with insulin resistance and coronary heart disease; the BCAA-related metabolites signature is predictive of intervention outcomes in patience with obesity and it is uniquely responsive to therapeutic interventions. In animal studies, BCAA supplementation promotes insulin resistance on high-fat diet background but increases average lifespan of mice on normal diet and enhances mitochondrial biogenesis and function in cardiac and skeletal muscle. These data, mostly generated by metabolomics and nutritional studies, raise the question of cellular metabolism of BCAA and its regulatory mechanisms. BCAAs, e.g. leucine, isoleucine and valine, are essential amino acids for mammals. Catabolism of BCAAs is a key step in maintaining BCAA homeostasis in the body. Impairment of BCAA catabolism in the heart due to the deletion of mitochondrial localized protein phosphatase 2C (PP2Cm), a key enzyme in activating BCAA catabolism, exacerbates cardiac responses to stress suggesting an important role of BCAA catabolism for cardiac response to stress. Little is known about the regulation of BCAA catabolism in the heart, nor of its relationship to the metabolism of other substrates. Using a mouse model with cardiac specific overexpression of insulin independent glucose transporter GLUT1 (GLUT1-TG) we have generated exciting preliminary data demonstrating that increased intracellular glucose down regulates BCAA catabolism through transcriptional mechanisms. This leads us to hypothesize that the metabolic homeostasis of glucose and BCAA is achieved via a reciprocal regulatory circuit involving Klf15 and insulin sensitivity. Here we propose to investigate the mechanistic link between glucose and BCAA metabolism in the heart through the following specific aims: 1) to test the hypothesis that glucose regulates BCAA catabolism via transcription factor Klf15 and its target genes; 2) To determine the global impact of altered glucose or BCAA utilization on cardiac substrate metabolism and to test the hypothesis that impaired BCAA catabolism promotes insulin resistance; 3) To test the hypothesis that defective BCAA catabolism accelerates the development of heart failure during chronic stress by impairing glucose metabolism and mitochondrial function.

Public Health Relevance

BCAAs, e.g. leucine, isoleucine and valine, are essential amino acids for mammals, and recent studies have suggested that BCAA catabolism play a critical role in insulin resistance and heart disease. The proposed study will define the molecular mechanisms linking glucose utilization and BCAA catabolism and determine the contributions of these metabolic pathways to cardiac response to stresses.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL118989-02
Application #
8822324
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Desvigne-Nickens, Patrice
Project Start
2014-04-01
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Washington
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Shao, Dan; Villet, Outi; Zhang, Zhen et al. (2018) Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat Commun 9:2935
Walker, Matthew A; Tian, Rong (2018) Raising NAD in Heart Failure: Time to Translate? Circulation 137:2274-2277
Lee, Chi Fung; Cao, Yang; Tian, Rong (2018) Failed Power Plant Turns Into Mass Murder: New Insight on Mitochondrial Cardiomyopathy. Circ Res 122:11-13
Cao, Yang; Bojjireddy, Naveen; Kim, Maengjo et al. (2017) Activation of ?2-AMPK Suppresses Ribosome Biogenesis and Protects Against Myocardial Ischemia/Reperfusion Injury. Circ Res 121:1182-1191
Ritterhoff, Julia; Tian, Rong (2017) Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 113:411-421
Nguyen, Son; Shao, Dan; Tomasi, Loreta C et al. (2017) The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. J Nutr Biochem 46:137-142
Li, Tao; Zhang, Zhen; Kolwicz Jr, Stephen C et al. (2017) Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metab 25:374-385
Choi, Yong Seon; de Mattos, Ana Barbosa Marcondes; Shao, Dan et al. (2016) Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol 100:64-71
Nagana Gowda, G A; Abell, Lauren; Lee, Chi Fung et al. (2016) Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy. Anal Chem 88:4817-24
Kolwicz Jr, Stephen C; Airhart, Sophia; Tian, Rong (2016) Ketones Step to the Plate: A Game Changer for Metabolic Remodeling in Heart Failure? Circulation 133:689-91

Showing the most recent 10 out of 14 publications