We face an epidemic of hospitalizations in heart failure (HF), which are often unrelated to HF. We hypothesize that extensive efforts have not successfully reduced hospitalizations in HF because management standards rely on disease-centric clinical guidelines, applied within provider-centric systems of care. Care models often overlook that the HF syndrome arises within a complex and poorly understood multi-morbidity context and how comorbid conditions present according to the type of HF (preserved vs. reduced EF) is not known. Further, as a chronic disease that coexists with multiple other conditions, HF causes self-management difficulties in elderly patients who may lack the needed support. Understanding the epidemiology of coexisting conditions and the determinants of successful self-management is fundamental to design new practice models and reduce hospitalizations in HF. The central goal of our revised application is to respond to the urgent need for new approaches by fulfilling 3 objectives: firstly, understand the complex epidemiology of coexisting conditions in HF, secondly, identify patient-centric attributes conducive to successful self-management by drawing upon the Chronic Care Model, thirdly, develop models that integrate cardiovascular characteristics, coexisting conditions and determinants of self-care to be used at the point of care to engage community support for at risk patients. Our 3 Specific Aims, designed to address these objectives, align with the priorities of the Department of Health and Human Services, outlined in their report Multiple Chronic Conditions: A Strategic Framework.
Aim 1 will study the epidemiology of coexisting conditions in HF in a community cohort of persons with HF within the Rochester Epidemiology Project. We will assess the prevalence of coexisting conditions (comorbid diseases, geriatric syndromes) and determine which clusters of conditions most impact hospitalizations. We will assess the emergence and progression of coexisting conditions after HF diagnosis and their association with hospitalizations, according to the type of HF (preserved vs. reduced EF).
Aim 2 will evaluate the role of patient-centric factors (social support and self-management) on hospitalizations in HF guided by the Chronic Care Model in a prospective cohort of patients living with HF.
Aim 3 will develop and evaluate prediction models to identify patients with HF at high risk for hospitalizations. In doing so, we will leverage the unique Health Information Exchange (HIE) capabilities and community partnerships established by the Office of the National Coordinator for Health Information Technology-Funded Southeast Minnesota Beacon Program and assess the feasibility of adapting an existing HIE architecture to implement such models at the point of care, identify patients at high risk for hospitalizations and alert community care coordinators when their patients have been hospitalized to enable proactive community support. By executing these aims, we will understand how the epidemiology of coexisting conditions and how patient-centric factors contribute to the burden of hospitalizations in HF. We will develop risk prediction models, which integrate cardiovascular characteristics, coexisting conditions and patient-centric factors to optimize tools for interventions to reduce hospitalizations in HF.

Public Health Relevance

This research will provide important information on how coexisting conditions and patient-centric factors (social support and patient self-management) contribute to the burden of hospitalizations in heart failure. It will determine key predictors of hospitalizations and help optimize tools for point of care interventions to reduce hospitalizations

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL120859-03
Application #
9062892
Study Section
Cardiovascular and Sleep Epidemiology Study Section (CASE)
Program Officer
Wright, Jacqueline
Project Start
2014-08-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Manemann, Sheila M; Chamberlain, Alanna M; Boyd, Cynthia M et al. (2018) Fall Risk and Outcomes Among Patients Hospitalized With Cardiovascular Disease in the Community. Circ Cardiovasc Qual Outcomes 11:e004199
Fabbri, Matteo; Yost, Kathleen; Finney Rutten, Lila J et al. (2018) Health Literacy and Outcomes in Patients With Heart Failure: A Prospective Community Study. Mayo Clin Proc 93:9-15
Manemann, Sheila M; Chamberlain, Alanna M; Roger, Véronique L et al. (2018) Multimorbidity and Functional Limitation in Individuals with Heart Failure: A Prospective Community Study. J Am Geriatr Soc 66:1101-1107
Tison, Geoffrey H; Chamberlain, Alanna M; Pletcher, Mark J et al. (2018) Identifying heart failure using EMR-based algorithms. Int J Med Inform 120:1-7
Manemann, Sheila M; Chamberlain, Alanna M; Boyd, Cynthia M et al. (2017) Skilled Nursing Facility Use and Hospitalizations in Heart Failure: A Community Linkage Study. Mayo Clin Proc :
Chamberlain, Alanna M; Dunlay, Shannon M; Gerber, Yariv et al. (2017) Burden and Timing of Hospitalizations in Heart Failure: A Community Study. Mayo Clin Proc 92:184-192
Jack Jr, Clifford R; Therneau, Terry M; Wiste, Heather J et al. (2016) Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study. Lancet Neurol 15:56-64
Manemann, Sheila M; Chamberlain, Alanna M; Boyd, Cynthia M et al. (2016) Multimorbidity in Heart Failure: Effect on Outcomes. J Am Geriatr Soc 64:1469-74
Gerber, Yariv; Weston, Susan A; Redfield, Margaret M et al. (2015) A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med 175:996-1004
Roger, Véronique L; Boerwinkle, Eric; Crapo, James D et al. (2015) Strategic transformation of population studies: recommendations of the working group on epidemiology and population sciences from the National Heart, Lung, and Blood Advisory Council and Board of External Experts. Am J Epidemiol 181:363-8

Showing the most recent 10 out of 11 publications