Clinical genetic testing has become standard-of-care for many diseases including hundreds of inherited conditions. However, interpreting genetic test results is often confounded by the discovery of 'variants of unknown significance' (VUS) for which there is insufficient data or inadequate predictive tools to establish whether or not a particular variant predisposes to a disease. This problem is particularly vexing for genetic disorders with strong allelic heterogeneity and a preponderance of 'private' mutations such as the congenital long-QT syndrome (LQTS), which predisposes young adults and children to sudden death from cardiac arrhythmias. With the anticipated incorporation of personal exome or genome data into routine clinical care, interpreting VUS will become an even greater challenge especially when variants in genes associated with human disorders are incidentally discovered. Unfortunately, there are no reliable methods to predict a priori whether a given variant predisposes an individual to a particular disorder or whether the change is merely a benign rare variant. We propose to develop a novel paradigm for distinguishing disease-causing mutations from benign variants in LQTS as a model for other inherited arrhythmia syndromes and channelopathies. We will focus on variants in KCNQ1, the most commonly mutated gene in LQTS. The central hypothesis of this proposal is that a holistic predictive model that relates experimentally determined protein structure and dynamics to function and disease is highly accurate even for novel variants. Our ultimate objectives are to develop a data-trained, web-accessible algorithm that classifies VUS discovered in KCNQ1 based on reliable predictions of the structure and dynamics of the affected protein, and to achieve prediction accuracy to levels needed to inform medical decisions. The medical importance of correctly classifying KCNQ1 variants provides strong justification for having a dedicated and highly-tailored gene-specific prediction model. The ability to distinguish deleterious from neutral variants would help avoid unnecessary and potentially harmful interventions in carriers of benign alleles, and save the lives of those with true mutations. We propose to collect extensive electrophysiological, biochemical and structural data on a large set of KCNQ1 variants discovered in LQTS subjects as well as several suspected benign or neutral variants (Aims 1-2), then use these data to iteratively train and validate a machine learning based algorithm that can differentiate benign from deleterious KCNQ1 alleles among a set of new VUS (Aim 3). Our proposal is innovative in the use of a multidisciplinary approach to functionally and structurally annotate genomic variant data for a medically important gene at an unprecedented scale, and then to use these experimental findings to train/test a novel computational system to achieve clinical-grade predictions. Targeting KCNQ1 will also validate an approach for parallel work that can be utilized to predict the medical significance of variants in closely related potassium channels associated with heritable epilepsy (KCNQ2, KCNQ3) or deafness (KCNQ4).

Public Health Relevance

The goal of this project is to develop a method to reliably predict the consequences of genetic variants of unknown significance discovered in the course of genetic testing in the congenital long-QT syndrome (LQTS), a cause of sudden cardiac death in children and young adults. We propose a multidisciplinary experimental approach including electrophysiology, biochemistry and structural biology deployed on a large scale to generate information on at least 110 genetic variants in the main gene responsible for LQTS (KCNQ1), which encodes a potassium channel required for normal electrical activity in the heart. Our final product will be a data-trained computational strategy that will outperform existing methods for accurately predicting the functional consequences of novel KCNQ1 genetic variants, enhance the value of genetic testing in LQTS and provide for more informed medical decisions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL122010-04
Application #
9313321
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Balijepalli, Ravi C
Project Start
2014-08-01
Project End
2018-07-31
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Pharmacology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Vanoye, Carlos G; Desai, Reshma R; Fabre, Katarina L et al. (2018) High-Throughput Functional Evaluation of KCNQ1 Decrypts Variants of Unknown Significance. Circ Genom Precis Med 11:e002345
Kharade, Sujay V; Kurata, Haruto; Bender, Aaron M et al. (2018) Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 94:926-937
Huang, Hui; Kuenze, Georg; Smith, Jarrod A et al. (2018) Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci Adv 4:eaar2631
Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A et al. (2018) Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia. BMC Bioinformatics 19:18
Schwartz, Peter J; Crotti, Lia; George Jr, Alfred L (2018) Modifier genes for sudden cardiac death. Eur Heart J 39:3925-3931
Sivley, R Michael; Dou, Xiaoyi; Meiler, Jens et al. (2018) Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures. Am J Hum Genet 102:415-426
Yang, Zhenlin; Han, Shuo; Keller, Max et al. (2018) Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature 556:520-524
Xia, Yan; Fischer, Axel W; Teixeira, Pedro et al. (2018) Integrated Structural Biology for ?-Helical Membrane Protein Structure Determination. Structure 26:657-666.e2
Kharade, Sujay V; Sheehan, Jonathan H; Figueroa, Eric E et al. (2017) Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590. Mol Pharmacol 92:338-346
Teixeira, Pedro L; Mendenhall, Jeff L; Heinze, Sten et al. (2017) Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning. PLoS One 12:e0177866

Showing the most recent 10 out of 31 publications